Can Metallic Glass Damping Be Increased by Stress Training Treatment?


Article Preview

We have subjected Zr59Cu20Al10Ni8Ti3 glassy sample to internal friction thermal cycle (IFTC) measurements under various conditions involving changes in heating/cooling rate, strain amplitude and frequency. Additional low temperature internal friction peaks (ALTIFP) were found to occur with the characteristic low temperature internal friction peak (CLTIFP) observed for some glassy alloys. The ALTIFP were enhanced on heating and reduced on cooling. Their strength increase following the number of IFTC can be related to a stress concentration in some zones of the glassy structure, which is abruptly relaxed by the viscous flow creating interfaces in the glassy structure. These interfaces are likely to be formed between atomic clusters. The growth of the ALTIFP increases significantly the whole IF level (IFL) from 10-4 to 10-2 enhancing the damping capacity of the glassy sample.



Edited by:

N. Igata and S. Takeuchi




T. A. M. Aboki, "Can Metallic Glass Damping Be Increased by Stress Training Treatment?", Key Engineering Materials, Vol. 319, pp. 145-150, 2006

Online since:

September 2006




[1] A. M. Aboki, G. Bouquet; Scripta Metal. Vol. 21 (1987), p.889.

[2] A. M. Aboki, M. Harmelin, G. Bouquet, R. Portier, Scripta Metal et Mater, Vol. 24 (1990) p.1873.

[3] R. Schaller in Mechanical Spectroscopy Q -1 2001 with Applications to Materials Science (Trans Tech Publications Switzerland 2001) p.621.

[4] A. V. Granato, J. Alloys and Compound, 355 (2003) p.171.

[5] T. A. M. Aboki, unpublished results.

[6] J. P. Chevalier, J. of Microscopy, Vol. 119 (1990) p.45.

[7] Sinning H-R, J. of Alloys and Compounds 310 (2000) p.224.

[8] T. Yagi, T. Imai, R. Tamura, S. Takeuchi, Mater. Sci. Eng., A 370, (2004) p.264.

[9] Q. Wang, J .M. Pelletier, Y. D. Dong, Y. F. Ji, Mater. Sci. Eng., A 370, (2004) p.320.

[10] Y. Hiki,T. Yagi, T. Aida, S. Takeuchi, Mater. Sci. Eng., A 370, (2004) p.302.

[11] B.S. Berry, W. C. Pritchet, C.C. Tsuei, Phys Rev. Lett ., 41, (1978) p.410.

[12] H. U. Künzi, K. Ageyman, H. J. Güntherodt, Sol. St. Com., Vol. 32, (1979) p.711.

[13] B.S. Berry, W. C. Pritchet, Scripta Metal. 15, (1981) p.637.

[14] P. Ochin, A. Dezellus, Ph. Plaindoux, F. Dalle, C. Elgoyhen, Ph. Vermaut, R. Portier, Metallofisica I Noveishie Tekhnologii (Special Issue) tom 23 (2001).


[15] T. A. M. Aboki, M. L. Masse, A. Dezellus, P. Ochin, R. Portier, Mater. Sc. Eng., A370, (2004) p.330.

[16] A. Serebryakov, Scripta metall. mater, 28, 9 (1993) 1011-1016 and references herein.

[17] S. Takeuchi, K. Maeda, Key Eng. Mater. Vol. 13-15, (1987) p.749.

[18] Y. Hiki, H. Kobayashi, H. Takahashi, J. Phys. IV, C86 (1996) p.609.

[19] D. B. Miracle, Nature Mater. 3, (2004) p.697.