Internal Friction of Hydrogenated Ti (Ni,Cu) Shape Memory Alloys


Article Preview

Effects of hydrogen doping on the internal friction (IF) of ternary Ti50Ni50-xCux (x=15, 20, 25) shape memory alloys, prepared by rolling and annealing laminating Ti and Ni-Cu alloy sheets, have been measured with a damping mechanical analyzer in a forced bending oscillation mode at temperatures from 173K to 423K at three frequencies, 0.1, 1 and 5Hz. The effects of hydrogen doping on IF are common to the three alloys: a hydrogen IF peak appears at around 260K; the IF peak value (tanφ) increases rapidly with increasing hydrogen concentration up to tanφ=0.03 at 0.5at% and then decreases; the peak temperature also increases rapidly and then gradually decreases. From the frequency dependence of the peak temperature, the activation energy E and the pre-exponential factor ω0 have been analyzed to be E=0.6-0.7eV and ω0=1013-14s-1. The origin of the hydrogen IF is interpreted to be the Snoek-Koester effect due to interaction of twin boundary dislocations and segregated hydrogen atoms. Effects of hydrogen on mechanical properties of the alloys have also been studied.



Edited by:

N. Igata and S. Takeuchi




T. Ueura et al., "Internal Friction of Hydrogenated Ti (Ni,Cu) Shape Memory Alloys ", Key Engineering Materials, Vol. 319, pp. 39-44, 2006

Online since:

September 2006




[1] G. W. Wasilewski: Trans. Met. Soc. AIME Vol. 233 (1965) p.169.

[2] R. R. Hasiguti and K. Iwasaki: J. Appl. Phys. Vol. 39 (1968) p.2182.

[3] B. Coluzzi, A. Biscarini, R. Campanella, L. Trotta ,G. Mazzolai, A. Tuissi and F. A. Mazzolai: Acta Mater. Vol. 47 (1999) p. (1965).


[4] S. Golyandin, S. Kustov, K. Sapozhnikov, M. parlinska, R. Gotthardt and J. Van Humbeeck: J. Alloys Comp. Vol. 310 (2006) p.312.

[5] K. Hishitani, M. Sasaki, D. Imai, Y. Kogo, N. Urahashi and N. Igata: J. Alloys Comp. Vol. 333 (2002) p.159.

[6] P. shi, D. Z. Yang, H. M. Shen and F. X. Chen: Materials Des. Vol. 21 (2000) p.521.

[7] I. Yoshida, D. Monma, K. Iino, K. Otsuka and M. Asai: J. Alloys Comp. Vol. 355 (2003) p.79.

[8] N. Igata, N. Urahashi, M. Sasaki and Y. Kogo: J. Alloys Comp. Vol. 355 (2003) p.85.

[9] Y. C. Lo, S. K. Wu and H. E. Horn: Acta Metall. Mater. Vol. 41 (1993) p.747.

[10] H. C. Lin, S. K. Wu and Y. C. Chang: Metall, Mater. Trans. A Vol. 26 (1993) p.851.

[11] T. H. Nam, T. Saburi and K. Shimizu: Mater. Trans. JIM Vol. 31 (1990) p.959.

[12] A. Rotini, A. Biscarini, R. Campanella, B. Coluzzi, G. Mazzolai and F. M. Mazzolai: Scripta Mater. Vol. 44 (2001) p.719.


[13] A. Biscarini, B. Coluzzi, G. Mazzolai, A. Tuissi and F. M. Mazzolai: J. Alloys Comp. Vol. 355 (2003) p.52.

[14] X. Ren, K. Taniwaki, K. Otsuka, T. Suzuki, K. Tanaka, Yu. I. Chumlyakov and T. Ueiki: Philos. Mag. A Vol. 75 (1999) p.31.

[15] T. Sakaguchi, T. Ueura, Y. Kogo, S. takeuchi and N. Igata: Mater. Trans. Vol. 46 (2005) p.1306.

[16] N. Igata, N. Urahashi, M. Sasaki and Y. Kogo: Mater. Sci. Eng. A Vol. 370 (2004) p.560.

[17] A. Biscarini, R. Campanella, B. Coluzzi, G. Mazzolai, L. Trotta, A. Tuissi and F. M. Mazzolai: Acta Metall. Vol. 47 (1999) p.4525.


[18] J. L. Snoek: Physica. Vol. 8 (1941) p.711.

[19] W. Koester, L. Bangert and R. Hahn: Arch. Eisenhuetterw. Vol. 25 (1954) p.569.

[20] G. Schoeck: Acta Matall. Vol. 11 (1963) p.617.