Different Damping Dependences on Volume Fractions of Thermal and Deformation-Induced ε Martensites in an Fe-Mn Alloy


Article Preview

We reports the damping properties of an Fe-23%Mn alloy with various amounts of thermal or deformation-induced ε martensite. By controlling cooling temperatures and cold rolling degrees, the volume fractions of thermal and deformation-induced ε martensites are changed from 33 to 50% and from 33 to 75%, respectively. The damping capacity of the Fe-23%Mn alloy increases with an increase in thermal ε martensite content, whereas the damping capacity associated with deformation-induced ε martensite shows a peak value at 57% of ε martensite. Transmission electron micrographs on deformed samples reveal that the decay of damping over 57% of deformation-induced ε martensite is caused by an introduction of perfect dislocations, which play a role in suppressing the movement of damping sources. For the same amount of ε martensite, deformation-induced ε martensite exhibits higher level of damping capacity than thermal ε martensite. This may well be owing to relatively greater length of γ/ε interfaces in response to higher number density of ε martensite plates.



Edited by:

N. Igata and S. Takeuchi




J. H. Jun et al., "Different Damping Dependences on Volume Fractions of Thermal and Deformation-Induced ε Martensites in an Fe-Mn Alloy", Key Engineering Materials, Vol. 319, pp. 79-84, 2006

Online since:

September 2006




[1] I.G. Ritchie and Z-L. Pan: Metall. Trans. A Vol. 22A (1991), p.607.

[2] K. Sugimoto: J. Iron Steel Inst. Jpn. Vol. 14 (1974), p.127.

[3] D.W. James: Mater. Sci. Eng. Vol. 4 (1969), p.1.

[4] A.V. Siefert and F.T. Worrell: J. Appl. Phys. Vol. 22 (1951), p.1257.

[5] O. Mercier, K.N. Melton and Y. de Preville: Acta Metall. Vol. 27 (1979), p.1467.

[6] K. Sugimoto: J. de Physique Vol. 42 (1981), p. C-971.

[7] C.S. Choi, M.E. Lee, S.H. Baik, Y.C. Son, J.C. Kim, J.H. Jun and Y.S. Ko: U.S. Patent 5, 290, 372, Mar. 1, (1994).

[8] C.S. Choi, S.H. Baik and J.D. Kim: Japan Patent 2, 036, 558, Mar. 28, (1996).

[9] C.S. Choi, J.D. Kim and S.H. Baik: Korea Patent 107, 044, Nov. 4, (1996).

[10] J.H. Jun and C.S. Choi: Scripta Mater. Vol. 38 (1998), p.543 a b 0. 3µµµµm.

[11] Y.K. Lee, J.H. Jun and C.S. Choi: ISIJ Int. Vol. 37 (1997), p.1023.

[12] J.H. Jun, Y.K. Lee and C.S. Choi: Mater. Sci. Tech. Vol. 16 (2000), p.389.

[13] Z. Nishiyama: Martensitic Transformation (Academic Press, USA 1978).

[14] B.D. Cullity: Elements of X-ray Diffraction (Addison-Wesley Press, USA 1978).

[15] Y. Tomota, H. Strum, J.W. Morris: Metall. Trans. A 17A (1986), p.537.

[16] T. Kikuchi, S. Kajiwara and Y. Tomota: J. Physique IV Vol. 5 (1995), p. C8-445.

[17] S. Cotes, M. Sade and A.F. Guillermet: Metall. Trans. A Vol. 26A (1995), p. (1957).

Fetching data from Crossref.
This may take some time to load.