Synthesis and Characterization of Li(Ni1/3Mn1/3Co1/3)O2 Nano-Particle by Aerosol Plasma Pyrolysis


Article Preview

Spherical LiNi1/3Mn1/3Co1/3O2 precursor powders were synthesized by aerosol plasma pyrolysis using aqueous solution of metal nitrate. XRD, SEM, TEM and BET analysis were used for determi- nation of the composition, morphology, particle size and surface area. SEM observation showed that the size of as-prepared particles were about 200 nm. The value of geometrical standard deviation (σg) calculated from the particle size distribution was 1.20, suggesting that the particle size distribution was narrow. The crystal phase of LiNi1/3Mn1/3Co1/3O2 was resulted in layered rock salt structure with R3m space group. The rechargeable capacity of LiNi1/3Mn1/3Co1/3O2 was about 142-175 mAh/g. The discharge capacity of LiNi1/3Mn1/3Co1/3O2 decreased with increasing cycle number. However, the cycling stability of Li(Ni1/3Mn1/3Co1/3)O2 powders that aerosol plasma pyrolysis process offered superior performance to ultrasonic spray pyrolysis process.



Edited by:

Keiichi Katayama, Kazumi Kato, Tadashi Takenaka, Masasuke Takata and Kazuo Shinozaki




K. Myoujin et al., "Synthesis and Characterization of Li(Ni1/3Mn1/3Co1/3)O2 Nano-Particle by Aerosol Plasma Pyrolysis ", Key Engineering Materials, Vol. 320, pp. 255-258, 2006

Online since:

September 2006




[1] M. Mizushima, P. C. Jones, P. J. Wiseman, and J. B. Goodenough, Mat. Res. Bull., 15 (1980) , p.783.

[2] C. Delmas, J. J. Braconnier, and P. Hagenmuller, Mat. Res. Bull., 17 (1982), p.117.

[3] T. Ohzuku, A. Umeda, and T. Hirai, Chemistry Express, 7 (1992) , p.193.

[4] J. N. Reimer, E. W. Fuller, E. Rossen, and J. R. Dohn, J. Electrochem. Soc., 140 (1993), p.3396.

[5] M. Tabuchi, K. Ado, C. Masquelier, I. Matsubara, H. Sakabe, H. Kageyama, H. Kobayashi, R. Kanno, and O. Nakamura, Solid State Ionics, 89 (1996) , p.53.

[6] R. J. Gummow and M. M. Thackeray, J. electrochem. Soc., 141 (1994), p.1178.

[7] J. N. Reimers, E. W. Fuller, E. Rossen, and J. R. Dahn, J. electrochem. Soc., 140(1994), p.3397.

[8] J. M. Trascon, E. Wang, F. K. Shokoohi, W. R. Mckinnon, and S. Colson, J. electrochem. Soc., 138 (1991), p.2859.

[9] M. Yoshio, H. Noguchi, H. Nakamura, K. Isono, T. Mouri, and M. Okada, Denki Kagaku (presently Electrochemistry), 63 (1995), p.67.

[10] C. Delma, I. Saadoune, Solid State Ionics, 370 (1992), p.53.

[11] R. Stoyanova, E. Zhecheva, L. Zarcova, , Solid State Ionics, 233 (1994), p.73.

[12] N. Iltchev, W. Bowden, P. R. Moses, Electrochem. Soc., 235 (1996), p.96.

[13] K. Uchitomi, A. Ueda, S. Aoyama, The 43rd Battery Symposium in Japan, October (2002), p.142.

[14] Y. M. Todorov, K. Numata, Electrochemical Acta, 50 (2004), p.495.

[15] S. Levaesseru, M. Menetrier, C. Delmas, J. electrochem. Soc., 149 (2002), p.1533. e-mail: ogihara@matse. fukui-u. ac. jp Fax: 0776-27-8624.