Glucose Biosensing Using a Near-Field Microwave Microprobe


Article Preview

We observed the glucose concentration of solutions using a near-field microwave microprobe (NFMM). Instead of the usual invasive technique, we take the advantage of the noncontact and noninvasive evaluation capabilities of an NFMM. The NFMM with a high Q dielectric resonator allows observation of small variations of the permittivity due to changes in the glucose concentration. By measuring the reflection coefficient we could observe the concentration of glucose with a detectable resolution to 0.5 mg/ml (0.05 %). The glucose biosensor using a NFMM provides an unique approach for glucose monitoring for diabetes.



Key Engineering Materials (Volumes 321-323)

Edited by:

Seung-Seok Lee, Joon Hyun Lee, Ik Keun Park, Sung-Jin Song, Man Yong Choi




A. Babajayan et al., "Glucose Biosensing Using a Near-Field Microwave Microprobe", Key Engineering Materials, Vols. 321-323, pp. 1048-1051, 2006

Online since:

October 2006




[1] A. Heller, Implanted electrochemical glucose sensors for the management of diabetes: Annu. Rev. Biomed. Eng. Vol. 1 (1999), pp.153-175.

[2] J. Wang, Glucose Biosensors 40: Years of Advances and Challenges: Electroanalysis Vol. 13, No. 12 (2001), pp.983-988.


[3] S. Zhang, G. Wright, Y. Yang, Materials and techniques for electrochemical biosensor design and construction: Biosens. Bioelectron. Vol. 15 (2000), pp.273-282.

[4] J.M. McKee, B.P. Johnson, Real-time chemical sensing of aqueous ethanol glucose mixtures: IEEE Trans. on Inst. Mesur. Vol. 49, No. 1 (2000), pp.114-119.


[5] A. Subramanian, P.I. Oden, S.J. Kennel, K.B. Jacobson, R.J. Warmack, T. Thundat, M.J. Doktycz, Glucose biosensing using an enzyme-coated microcantilever: Appl. Phys. Lett. Vol. 81, No. 2 (2002), pp.385-387.


[6] B. Choudhry, R. Shinar, J. Shinar, Glucose biosensors based on organic light-emitting devices structurally: J. Appl. Phys. Vol. 96, No. 5 (2004), pp.2949-2954.


[7] A. Lann, M. Golosovsky, D. Davidov, A. Frenkel, Combined millimeter-wave microscope and capacitance distance control for the quantitative mapping of sheet resistance of conducting layers: Appl. Phys. Lett. Vol. 73, No. 19 (1998), pp.2832-2834.


[8] M. Abu-Teir, M. Golosovsky, D. Davidov, A. Frenkel, H. Goldberg, Near-field scanning microwave probe based on a dielectric resonator: Rev. Sci. Instrum. Vol. 72, No. 4 (2001), p.2073-(2079).


[9] B. Friedman, M. Gaspar, S. Kalachikov, K. Lee, R. Levicky, Sensitive, label-free DNA diagnostics based on near-field microwave imaging: J. Am. Chem. Soc. Vol. 127 (2005), pp.9666-9667.


[10] S. Kim, H. You, K. Lee, B. Friedman, M. Gaspar, R. Levicky, Distance control for a near-field scanning microwave microscope in liquid using a quartz tuning fork: Appl. Phys. Lett. Vol. 86, No. 1 (2005), pp.153506-3.


[11] J. Kim, K. Lee, B. Friedman, D. Cha, Near-field scanning microwave microscope using a dielectric resonator: Appl. Phys. Lett. Vol. 83, No. 5 (2003), pp.1032-1034.


[12] D.M. Pozar, Microwave Engineering, John Wiley & Sons Inc. (1998).