Structural Health Monitoring Based on Electrical Impedance of a Carbon Nanotube Neuron


Article Preview

This paper introduces a new sensor design based on a carbon nanotube structural neuron for structural health monitoring applications. The carbon nanotube neuron is a thin and narrow polymer film sensor that is bonded or deposited onto a structure. The electrochemical impedance (resistance and capacitance) of the neuron changes due to deterioration of the structure where the neuron is located. A network of the long carbon nanotube neurons can form a structural neural system to provide large area coverage and an assurance of the operational health of a structure without the need for actuators and complex wave propagation analyses that are used with other SHM methods. The neural system can also reduce the cost of health monitoring by using biomimetic signal processing to minimize the number of channels of data acquisition needed to detect damage. The carbon nanotube neuron is lightweight and easily applied to the structural surface, and there is no stress concentration, no piezoelectrics, no amplifier, and no storage of high frequency waveforms. The carbon nanotube neuron is expected to find applications in detecting damage and corrosion in large complex structures including composite and metallic aircraft and rotorcraft, bridges, and almost any type of structure with almost no penalty to the structure.



Key Engineering Materials (Volumes 321-323)

Edited by:

Seung-Seok Lee, Joon Hyun Lee, Ik Keun Park, Sung-Jin Song, Man Yong Choi




I. P. Kang et al., "Structural Health Monitoring Based on Electrical Impedance of a Carbon Nanotube Neuron", Key Engineering Materials, Vols. 321-323, pp. 140-145, 2006

Online since:

October 2006




[1] A. Iwasaki, A. Todoroki, Y. Shimamura, H. Kobayashi: Smart Materials and Structures Vol. 13 (2004), p.80.

[2] H. Ohno, H. Naruse, M. Kihara, A. Shimada: Optical Fiber Technology Vol. 7 (2001), p.45.

[3] A. Ghoshal, A. Chattopadhyay, M.J. Schulz, R. Thornburgh, K. Waldron: Journal of Intelligent Material Systems and Structures Vol. 14 (2003), p.521.

[4] G.M. Adam, P.J. Newman, I. McKenzie, M.J. Henderson, B.R.W. Hinton: Structural Health Monitoring.

[5] M. F Yu, B. S Files, S. Arepalli, R.S. Ruoff: Physcial Review Letters Vol. 84-24 (2000), p.5552.

[6] S. Frank, P. Poncharal. Z.L. Wang, W.A. Heer: Science Vol. 280 (1998), p.1744.

[7] R.H. Baughman, C. Cui, A.A. Zakhidov, Z. Iqbal, J.N. Barisci, G.M. Spinks, G.G. Wallace, A. Mazzoldi, D. Rossi, A.G. Rinzler, O. Jaschinski, S. Roth, M. Kertesz: Science Vol. 2845418 (1999), p.1340.

[8] T.W. Tombler, C. Zhou, L. Alexseyev, J. Kong, H. Dai, L, Liu, C.S. Jayanthi, M. Tang, S.Y. Wu: Nature Vol. 405 (2000), p.769.


[9] J. Hone, M. Whitney, C. Piskoti, A. Zettl: Physical Review B Vol. 59-4 (1999).

[10] T.J. Mehrez, H. Guo, J. Wang, C. Roland: Physical Review Letters Vol. 84-11 (2000), p.2682.

[11] P. Kral, M. Shapiro: Physical Review Letters Vol. 86 (2001), p.131.

[12] J. Hilding, E.A. Grulke, Z.G. Zhang, F. Lockwood: Journal of Dispersion Science and Technology Vol. 23-1 (2003) p.1.

[13] Y.P. Zhao, B.Q. Wei, P.M. Ajay, G. Ramanath, T.M. Lu, G.C. Wang, R. Rubio, S. Roche: Physical Review B Vol. 64-201402(R) (2001).

[14] I. Kang, Y.H. Yoon, J.H. Kim, J.W. Lee, R. Gollapudi, S. Subramaniam, S. Narsimhadevara, D. Hurd, G.R. Kirikera, V. Shanov, M.J. Schulz, D. Shi, J. Boerio, S. Mall : Composites Part B: Engineering (2005), accepted.


[15] J.H. Chen, W.Z. Li, D.Z. Wang, S.X. Yang, J.G. Wen, Z.F. Ren: Carbon Vol. 40 (2002), p.1193.

[16] K. An, W. Kim, Y. Park, Y. Choi, S. Lee, D. Chung, D. Bae, S. Lim, Y Lee: Advanced Materials Vol. 13-7 (2001), p.497.

[17] I. Kang, J.W. Lee, Y.H. Yun, V.N. Shanov, M.J. Schulz. Invention Disclosure (UC 105-046), University of Cincinnati (2005).

[18] R.K. Goutham: An Artificial Neural System for Structural Health Monitoring (MS thesis, University of Cincinnati, 2003).