Ball SAW Sensors for Safety and Reliability of Fuel Cell Technologies


Article Preview

Detection of hydrogen gas is a crucial task for establishing safety and reliability of fuel cells, a key technology for the environment and our society. However, hydrogen is difficult to detect and various hydrogen sensors have many drawbacks. Here we report a novel hydrogen gas sensor, the ball surface acoustic wave (SAW) sensor, using Pd or PdNi sensitive film. The ball SAW sensor is based on a novel phenomenon, diffraction-free propagation of collimated beam along an equator of sphere. The resultant ultra-multiple roundtrips of SAW makes it possible to achieve highest sensitivity among SAW sensors. Moreover, it enables to use a very thin sensitive film, and consequently the shortest response time (2s) was realized. In terms of the sensing range, it has the widest range of 10 ppm to 100 % among any hydrogen sensors including FET or resistivity sensors. The ball SAW sensor can be applied not only to hydrogen but also to any gasses and possibly to liquids.



Key Engineering Materials (Volumes 321-323)

Edited by:

Seung-Seok Lee, Joon Hyun Lee, Ik Keun Park, Sung-Jin Song, Man Yong Choi




K. Yamanaka, "Ball SAW Sensors for Safety and Reliability of Fuel Cell Technologies", Key Engineering Materials, Vols. 321-323, pp. 48-52, 2006

Online since:

October 2006





[1] R. C. Hughes and W. K. Schubert: J. Appl. Phys. 71 (1992) 542.

[2] S. Okuyama, K. Umemoto, K. Okuyama, S. Ohshima and K. Matsushita, Jpn. J. Appl. Phys. 36, (1997)6905.

[3] Ross C. Thomas and Robert C. Hughes: J. Electrochem. Soc. 144 (1997).

[4] P. Liu, S.H. Lee, H.M. Cheong, C.E. Tracy, J.R. Pitts and R.D. Smith: J. Electrochem. Soc. 149(2002).

[5] W.P. Jakubik, M.W. Urbanczyk, S. Kochowski and J. Bodzenta, Sens. Actuators B, 82, (2002) 265.

[6] M. Kadota, Jpn. J. Appl. Phys. 44 (2005) 4285.

[7] Hiroshi Kamizuma, Liyan Yang, Tatsuya Omori, Ken-ya Hashimoto and Masatsune Yamaguchi, Jpn. J. Appl. Phys. 44 (2005) 4535.


[8] K. Yamanaka, H. cho and Y. Tsukahara: Appl. Phys. Lett. 76 (2000) 2797.

[9] K. Yamanaka, H. Cho and Y. Tsukahara, Tech. Rep. Inst. of Electronics, Information and Communication Engineers, vol. US2000-14, pp.49-56, (2000).

[10] Y. Tsukahara, N. Nakaso, H. Cho and K. Yamanaka: Appl. Phys. Lett. 77 (2000) 2926.

[11] S. Ishikawa, H. Cho, K. Yamanaka, N. Nakaso and Y. Tsukahara: Jpn. J. Appl. Phys. 40 (2001) 3623.

[12] N. Nakaso, Y. tsukahara, S. Ishikawa and K. Yamanaka: Proc. 2002 IEEE Ultrason. Symp. (2002) 47.

[13] S. Ishikawa, N. Nakaso, N. Takeda, T. Mihara, Y. Tsukahara and K. Yamanaka: Appl. Phys. Lett. 83 (2003) 4649.

[14] S. Akao, N. Nakaso, T. Ohgi and K. Yamanaka: Jpn. J. Appl. Phys.: 43 (2004) 3067.

[15] K. Yamanaka, S. Ishikawa, N. Nakaso, N. Takeda, T. Mihara and Y. Tsukahara: Proc. 2003 IEEE Ultrason. Symp. (2004) 299.

[16] K. Yamanaka, S. Ishikawa, N. Nakaso, N. Takeda, D-Y. Sim, T. Mihara, A. Mizukami, S. Akao and Y. Tsukahara: to be published in IEEE Trans. Sonics & Ultrason.