Semi-Parametric Learning for Classification of Pitting Corrosion Detected by Acoustic Emission

Abstract:

Article Preview

This paper presents a Non-Destructive Testing (NDT) technique, Acoustic Emission (AE) to classify pitting corrosion severity in austenitic stainless steel 304 (SS304). The corrosion severity is graded roughly into five levels based on the depth of corrosion. A number of timedomain AE parameters were extracted and used as features in our classification methods. In this work, we present practical classification techniques based on Bayesian Statistical Decision Theory, namely Maximum A Posteriori (MAP) and Maximum Likelihood (ML) classifiers. Mixture of Gaussian distributions is used as the class-conditional probability density function for the classifiers. The mixture model has several appealing attributes such as the ability to model any probability density function (pdf) with any precision and the efficiency of parameter-estimation algorithm. However, the model still suffers from model-order-selection and initialization problems which greatly limit its applications. In this work, we introduced a semi-parametric scheme for learning the mixture model which can solve the mentioned difficulties. The method was compared with conventional Feed-Forward Neural Network (FFNN) and Probabilistic Neural Network (PNN) to evaluate its performance. We found that our proposed methods gave much lower classificationerror rate and also far smaller variance of the classifiers.

Info:

Periodical:

Key Engineering Materials (Volumes 321-323)

Edited by:

Seung-Seok Lee, Joon Hyun Lee, Ik Keun Park, Sung-Jin Song, Man Yong Choi

Pages:

549-552

DOI:

10.4028/www.scientific.net/KEM.321-323.549

Citation:

A. Prateepasen et al., "Semi-Parametric Learning for Classification of Pitting Corrosion Detected by Acoustic Emission", Key Engineering Materials, Vols. 321-323, pp. 549-552, 2006

Online since:

October 2006

Export:

Price:

$35.00

[1] C. Jirarungsatean, A. Prateepasen and P. Thungsuk: IE net. conf., Thailand, pp.376-387, (2002).

[2] R. S. Geng: Key Engineering Materials., Vol. 270-273 (2004), pp.503-509.

[3] H. Mazille, R. Rothea and C. Tronel: Corrosion Science, Vol. 37, No. 9, pp.1365-1375, (1995).

[4] H. Idrissi, H. Mazille, L. Renaud and Y. Cetre: Corrosion Science, 43, 627-641, (2001).

[5] J. Dimopoulos ATTAR: Corrosion Control & NDT, Melbourn, Australia, (2003).

[6] N. Saenkhum, A. Prateepasen and P. Kaewtrakulpong: IMECE'2003, Washington, D.C., (2003).

[7] C. Jirarungsatean, A. Prateepasen and P. Kaewtrakulpong: Corrosion Control & NDT, Melbourn, Australia, (2003).

[8] R.O. Duda, P.E. Hart, and D.G. Stork: Pattern Classification. John Wiley and Sons, (2001).

[9] D.M. Titterington, A.F.M. Smith, and U.E. Makov: Statistical Analysis of Finite Mixture Distributions. Wiley, (1985).

[10] J. Rissanen: In ICPR98, page Invited Talk, (1998).

In order to see related information, you need to Login.