Experimental Simulation of Neutron Irradiation Damage in Reactor Pressure Vessel Steels


Article Preview

Degradation of reactor pressure vessel (RPV) steels due to neutron irradiation embrittlement is directly related to safety and life of the nuclear power plant (NPP). In order to ensure structural integrity and safe operation of NPP, surveillance programs are conducted to monitor and predict the changes in RPV materials. Availability of irradiated specimen from RPV or irradiation of specimens under simulated conditions of RPV for conducting fracture toughness tests remains a major problem in surveillance programs. In order to resolve this problem, various methods are adopted to experimentally simulate the effect of neutron irradiation on mechanical behavior of RPV steels using electron irradiation, thermal aging, strain hardening, combined quenching and hardening and pre-straining combined with heat treatment. This paper presents a review of the existing research on experimental simulation of neutron irradiation damage through various methodologies and discusses the future scope of their application in plant safety and life assessment of RPV’s.



Key Engineering Materials (Volumes 324-325)

Edited by:

M.H. Aliabadi, Qingfen Li, Li Li and F.-G. Buchholz




F. Hashmi et al., "Experimental Simulation of Neutron Irradiation Damage in Reactor Pressure Vessel Steels ", Key Engineering Materials, Vols. 324-325, pp. 1189-1192, 2006

Online since:

November 2006




[1] L.E. Steele, Neutron irradiation embrittlement of reactor pressure vessel steels, At. Energy Rev. 7(1969).

[2] ASTM E185 Standard Practice for Design of Surveillance Programs for Light-Water Moderated Nuclear Power Reactor Vessels.

DOI: https://doi.org/10.1520/e0185-15e01

[3] M.P. Manahan, Miniaturized Charpy test for reactor pressure vessel embrittlement characterization, Effects of radiation on materials, 18 th Int. Symp. ASTM STP 1325, Eds. R.K. Nanstad, M.L. Hamilton, F.A. Garner, and A.S. Kumar, ASTM, (1997).

DOI: https://doi.org/10.1520/stp13864s

[4] Margolin BZ, Shvetsova VA, Gulenko AG, Ilyin AV, Nikolaev VA, Smirnov VI, Int. J. Pressure Vessel Piping 79 (2002).

[5] G.R. Odette, P.M. Lombrozo, R.A. Wullaert, Proc. 12 th Int. Symp. Effects of Radiation on Materials, ASTM STP 870, F.A. Garner and J.S. Perrin (Eds. ), ASTM, Philadelphia, (1985).

[6] G. E. Lucas, G.R. Odette, P.M. Lombrozo and J.W. Sheckherd, Proc. 12 th Int. Symp. Effects of Radiation on Materials, ASTM STP 870, F.A. Garner and J.S. Perrin (Eds. ), ASTM, Phil. (1985).

[7] W. J. Phythian, C.A. English, Microstructural evolution in reactor pressure vessel steels, J. Nucl. Mater. 205 (1993).

[8] G.R. Odette, On the ductile to brittle transition in martensitic stainless steels - Mechanisms, models and structural implications, J. Nucl. Mater. 212-215 (1994).

DOI: https://doi.org/10.1016/0022-3115(94)90032-9

[9] G.R. Odette and G.E. Lucas, Embrittlement of nuclear reactor pressure vessels, JOM, 53 (7) (2001).

[10] M. Brumovsky, L. Debarberis, International Seminar on Networking for effective R&D, JRCIE Petten, (2003).

[11] B.A. Gurovich, E.A. Kuleshova, Assessment of relative contributions from different mechanisms to radiation embrittlement of reactor pressure vessel steels. J. Nucl. Mater. 246 (1997).

DOI: https://doi.org/10.1016/s0022-3115(97)00103-7

[12] M.J. Makin, T.H. Blewitt, Acta Metall. 10 (1962).

[13] D.E. Alexander, L.E. Rehn, K. Farrell, R.E. Stoller, J. Nucl. Mater. 228 (1996).

[14] K. Farrell, R.E. Stoller, P. Jung, H. Ullmaier, Hardening of ferritic alloys at 288°C by electron irradiation, J. Nucl. Mater. 279 (2000).

DOI: https://doi.org/10.1016/s0022-3115(99)00270-6

[15] M. H. Mathon, A. Barbu, F. Dunstetter, F. Maury, N. Laurenzelli, C. H. de Novion, Experimental study and modelling of copper precipitation under electron irradiation in dilute FeCu binary alloys, J. Nucl. Mater. 245 (1997).

DOI: https://doi.org/10.1016/s0022-3115(97)00010-x

[16] A. Barbu, M. H. Mathon, F. Maury, J. F. Belliard, B. Beuneu, C. H. de Novion, A comparison of the effect of electron irradiation and of thermal aging on the hardness of FeCu binary alloys, J. Nucl. Mater. 257 (1998).

DOI: https://doi.org/10.1016/s0022-3115(98)00468-1

[17] P. Pareige, M. K. Miller, Characterization of neutron induced copper-enriched clusters in pressure vessel steel weld: an APFIM study, J. Applied Surface Science 94/95 (1996).

DOI: https://doi.org/10.1016/0169-4332(95)00399-1

[18] R. J. DiMelfi, D. E. Alexander, L. E. Rehn, Post-yield strain hardening behavior as a clue to understanding irradiation hardening, J. Nucl. Mater. 252 (1998).

DOI: https://doi.org/10.1016/s0022-3115(97)00316-4

[19] R. G. Faulkner, S. H. Song, P. E. J. Flewitt, Combined quenching and tempering induced phosphorus segregation to grain boundaries in 2. 25Cr-1Mo steel. Mater. Sci. and Tech. 12(1996).

DOI: https://doi.org/10.1179/026708396790122260

[20] C. S. Wiesner, Validity of crack arrest arguments for magnox RPVs. TWI report 220422(1995).

[21] S.J. Wu, J.F. Knott, Effect of degradation on the mechanical properties and fracture toughness of a steel pressure-vessel weld metal. Int. J. Pressure Vessel Piping 80 (2003).

DOI: https://doi.org/10.1016/j.ijpvp.2003.01.003