The Ductile Damage and Fracture Mechanisms Analysis with Random Dispersion Multivoids

Abstract:

Article Preview

The cell model with twenty-five random dispersion voids was employed to analyze the damage and fracture mechanism of the nodular cast iron. The results show that the growth velocity of the voids has obvious difference with each other due to the random dispersion of voids. In the early stage of the deformation, the growth of the voids is mainly determined by the distance of the voids since the triaxiality stress parameter of the matrix around the voids is approximately equal. With the increase of the triaxiality stress parameter of the matrix materials around the void, the evolution velocity of the voids increases quickly. At the same time, this will influence the neighboring voids to grow quickly. The chain reaction of the rapidly increase of voids lead to the final material failure. The results can explain the fracture appearance of the smooth bar specimens under uniaxial tensile load really.

Info:

Periodical:

Key Engineering Materials (Volumes 324-325)

Edited by:

M.H. Aliabadi, Qingfen Li, Li Li and F.-G. Buchholz

Pages:

763-766

DOI:

10.4028/www.scientific.net/KEM.324-325.763

Citation:

H. D. Yu et al., "The Ductile Damage and Fracture Mechanisms Analysis with Random Dispersion Multivoids", Key Engineering Materials, Vols. 324-325, pp. 763-766, 2006

Online since:

November 2006

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.