Hybrid Electro-Active Papers of Cellulose and Carbon Nanotubes for Bio-Mimetic Actuators


Article Preview

Electro-Active Paper (EAPap) materials based on cellulose are attractive for many applications because of their low voltage operation, lightweight, dryness, low power consumption, bio-degradability. The construction of EAPap actuator has been achieved using the cellulose paper film coated with thin gold electrode layers. This actuator showed a reversible and reproducible bending movement. In order to improve both force and displacement of this, efforts are made to construct hybrid EAPap actuators using cellulose paper coated with carbon nanotubes (CNT). To coat the CNT, single-walled carbon nanotubes (SWCNT) and multi-walled carbon nanotubes (MWCNT) are dispersed in polyaniline (PANI) matrix, and the solution is coated on the EAPap by using a spin coater. It is expected that the use of CNT can improve the force output by enhancing the stiffness of the hybrid EAPap actuator. Furthermore, the presence of the PANI may improve the actuation performance of the EAPap material. The performance of hybrid EAPap actuators is tested in an environmental chamber in terms of free displacement, blocked force and electrical power consumption. The performance of hybrid actuators is investigated for bio-mimetic applications.



Key Engineering Materials (Volumes 324-325)

Edited by:

M.H. Aliabadi, Qingfen Li, Li Li and F.-G. Buchholz




S. R. Yun et al., "Hybrid Electro-Active Papers of Cellulose and Carbon Nanotubes for Bio-Mimetic Actuators", Key Engineering Materials, Vols. 324-325, pp. 843-846, 2006

Online since:

November 2006




[1] D.G. Coffey, D.A. Bell, A. Henderson: Cellulose and Cellulose Derivatives, in Food Polysaccharides and their Applications, A.M. Stephen, Ed., Marcel Dekker, New York (1995), p.124.

[2] R.L. Whistler, J.M. BeMiller: Cellulosics, in: Carbohydrate Chemistry of Food Scientists, American Association of Cereal Chemists, Inc., Vol. 7 Minnesota (1997), p.155.

[3] F. Ling, E. Bramachary, M. Xu, F. Svec, J. M. J. Fréchet: J. Sep. Sci 26 (2003), pp.1337-1346.

[4] J. Kim, Y-B. Seo: Smart Mater. Struct. 11 (2002), pp.355-360.

[5] M.S. Dresselhaus, G. Dresselhaus, P.H. Avouris Eds.: Vol. 80 Top. Appl. Phys, Springer, Berlin, (2001).

[6] M.S. Dresselhaus, M. Endo: Top. Appl. Phys. 80 (2001), p.11.

[7] O.A. Willians, M.D. Whitfield, R.B. Jackman, J.S. Foord, J.E. Butler, C.E. Nebel: Appl. Phys. Lett. 78 (2001), p.3460.

[8] B. Kleinsorge, A.C. Ferrari, J. Robertson, W.I. Milne: J. Appl. Phys. 88 (2000), p.1149.

[9] C.J. Drury, C.M.J. Mutsaers, C.M. Hart, M. Matters, D.M. de Leeuw: Appl. Phys. Lett. 73 (1998), p.108.

[10] A.G. MacDiarmid, J.C. Chiang, M. Halpern, W.S. Huang, S.L. Mu, N.L. Somasiri et al.: Mol. Cryst. Liq. Cryst 121 (1985), p.121.

[11] W. Feng, E.H. Sun, A. Fujii, H.C. Wu, K. Niihara, K. Yoshino: Bull. Chem. Soc. Jpn. 73 (2000), p.2627.

[12] M. Tahhan, V.T. Truong, G.M. Spinks, G.G. Wallace: Smart Mater. Struct. 12 (2003), p.626632.

[13] J. Kim, C.S. Song, S.H. Bae: SPIE'S 12th Annual Symposium on Smart Structure and Materials, Vol. 5759, 75-81 (San Diego. CA, March 2005).

[14] S.R. Yun, J. Kim, Z. Ounaies, T. St Clair: SPIE'S 12th Annual Symposium on Smart Structure and Materials, Vol. 5761, 62-68 (San Diego. CA, March 2005).

[15] S. H. Choi, K. D. Song, G. King and S. H. Chu: Smart Mater. Struct. 13 (2004), pp.38-48.