Modelling Intergranular Microfracture Using a Boundary Cohesive Grain Element Formulation

Abstract:

Article Preview

In this paper, intergranular microfracture evolution in polycrystalline brittle materials is simulated using a cohesive grain boundary integral formulation. A linear cohesive law is used for modelling multiple microcracking initiation and propagation under mixed mode failure conditions, encountering the stochastic e=ects of the grain location, morphology and orientation. Furthermore, in cases where crack surfaces come into contact, slide or separate, fully frictional contact analysis is performed.

Info:

Periodical:

Key Engineering Materials (Volumes 324-325)

Edited by:

M.H. Aliabadi, Qingfen Li, Li Li and F.-G. Buchholz

Pages:

9-12

DOI:

10.4028/www.scientific.net/KEM.324-325.9

Citation:

G.K. Sfantos and M.H. Aliabadi, "Modelling Intergranular Microfracture Using a Boundary Cohesive Grain Element Formulation", Key Engineering Materials, Vols. 324-325, pp. 9-12, 2006

Online since:

November 2006

Export:

Price:

$35.00

[1] A.G. Crocker, P.E.J. Flewitt and G.E. Smith: Int. Materials Reviews Vol. 50 (2005), p.99.

[2] E.P. George, C.T. Liu, H. Lin and D.P. Pope: Materials Science and Engineering A Vol. 92-93 (1995), p.277.

[3] H.D. Espinosa and P.D. Zavattieri: Mechanics of Materials Vol. 35 (2003), p.333.

[4] J.D. Clayton: Int. Journal of Solids and Structures Vol. 42 (2005), p.4613.

[5] J. Zhai, V. Tomar and M. Zhou: J. of Engng Materials and Techn., Trans. ASME Vol. 126 (2004), p.179.

[6] N. Sukumar, D.J. Srolovitz, T.J. Baker and J.H. Prevost: Int. J. for Num. Meth. in Engng Vol. 56 (2003), p. (2015).

[7] M.H. Aliabadi: The Boundary Element Method, Volume 2, Applications in Solids and Structures (Wiley, London 2002).

[8] G.K. Sfantos and M.H. Aliabadi: Int. J. for Num. Meth. in Engng (2006), submitted.

[9] M. OrtizandA. Pandolfi: Int. J. for Num. Meth. in Engng Vol. 44 (1999), p.1267.

[10] A. Okabe, B. Boots, K. Sugihara and S.N. Chiu: Spatial Tessellations: Concepts and Applications of Voronoi Diagrams (Wiley, Chichester 2000).

[11] V. Tomar, Z. Jun and Z. Min: Int. J. for Num. Meth. in Engng Vol. 61 (2004), p.1894.

[12] R.F.S. Hearmon, in: Numerical data and functional relationships in science and technology: Group III, Crystal and solid state physics, Vol. 1, Elastic, piezoelectric, piezooptic and electrooptic constants of crystals, edited by K.H. Hellwege, Springer, Berlin (1966).

[13] ASTM E112-96 (Reapproved 2004): Standard Test Methods for Determining Average Grain Size (ASTM International).

[14] R.W. Hertzberg: Deformation and fracture mechanics of engineering materials (Wiley, Chichester 1996).

[15] S.F. Pugh: British Journal of Applied Physics Vol 18 (1967), p.129.

[16] P.A. Klerck, E.J. Sellers and D.R.J. Owen: Comp. Meth. in Applied Mech. and Engng Vol. 193 (2004), p.3035.

In order to see related information, you need to Login.