Integrated Tunneling Device for High Sensitive Sensor Applications

Abstract:

Article Preview

This paper describes an integrated tunneling sensor for applications of an electronic nose and a scanning probe microscope. Ultra-thin silicon dioxide having a thickness of ~2 nm is used as a material of the tunneling sensor. It provides much higher sensitivity in comparison with others sensing methods. The tunneling sensor is placed on a fixed edge where the maximum strain arises. As additional masses or forces are added to the surface of the cantilever, the thickness of the thin silicon dioxide layer is slightly decreased. By using exponential nature of electron tunneling dominated by the thickness of the silicon dioxide it can be used as an ultra-high sensitive sensor. The thin dioxide is fabricated by dry oxidation using a vertical furnace. The cantilever structures are defined by conventional MEMS technologies. Current density of the tunneling sensor is evaluated as a function of voltage and is compared with numerical analysis based on direct tunneling phenomena.

Info:

Periodical:

Key Engineering Materials (Volumes 326-328)

Edited by:

Soon-Bok Lee and Yun-Jae Kim

Pages:

317-320

DOI:

10.4028/www.scientific.net/KEM.326-328.317

Citation:

D. W. Lee et al., "Integrated Tunneling Device for High Sensitive Sensor Applications", Key Engineering Materials, Vols. 326-328, pp. 317-320, 2006

Online since:

December 2006

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.