Calcium Phosphate Coatings on Titanium Alloy via an Electrodeposition Method


Article Preview

Calcium phosphates coatings were deposited onto titanium discs via en electrodeposition method. Discs were blasted with calcium phosphate particles and etched in a mixture of sulfuric and fluoric acids. Temperatures from 25 to 80°C and current densities from 8 to 120 mA/ cm2 were used. Deposition times tested were between 10 and 120 min. The electrolyte consisted of a super saturated solution stirred at 250 rpm. The amount of magnesium (Mg2+) and carbonate (HCO3-) ions was varied from 0 to 1 mM. Coatings increased in thickness by increasing deposition time. The different amounts of Mg2+ and HCO3- affected the homogeneity and morphology of the coatings. Main factors affecting the deposition were temperature of electrolyte and current density.



Key Engineering Materials (Volumes 330-332)

Main Theme:

Edited by:

Xingdong Zhang, Xudong Li, Hongsong Fan, Xuanyong Liu




M. A. Lopez-Heredia et al., "Calcium Phosphate Coatings on Titanium Alloy via an Electrodeposition Method", Key Engineering Materials, Vols. 330-332, pp. 549-552, 2007

Online since:

February 2007




[1] J. B. Park and R. S. Lakes, Biomaterials: an introduction. 1992, New York: Plenum Press.

[2] J. Lausmaa, J. Electron Spectrosc. Vol. 8 (1996), p.343.

[3] U. Rolander, L. Mattsson, J. Lausmaa, and B. Kasemo, Ultramicroscopy Vol. 19(1986), p.407.


[4] H. Kienapfel, C. Sprey, A. Wilke, and P. Griss, J. Arthroplasty Vol. 14 (1999), p.355.

[5] Y. Fu, A. W. Batchelor, Y. Wang, and K. A. Khor, Wear Vol. 217 (1998), p.132.

[6] Y. Fu, A. W. Batchelor, and K. A. Khor, Wear Vol. 230 (1999), p.98.

[7] H. C. Gledhill, I. G. Turner, and C. Doyle, Biomaterials Vol. 22 (2001), p.1233.

[8] M. Svehla, P. Morberg, W. Bruce, B. Zicat, and W. R. Walsh, J. Arthroplasty Vol. 17 (2002), p.304.

[9] J. Lawrence, L. Hao, and H. R. Chew, Surf. Coat. Tech. Vol. 200 (2006), p.5581.

[10] S. Ban and S. Maruno, Biomaterials Vol. 16 (1995), p.977.

[11] S. Ban and S. Maruno, Biomaterials Vol. 19 (1998), p.1245.

[12] S. Rossler, A. Sewing, M. Stolzel, R. Born, D. Scharnweber, M. Dard, and H. Worch, J. Biomed. Mater. Res. A Vol. 64 (2003), p.655.

[13] S. Ban and J. Hasegawa, Biomaterials Vol. 23 (2002), p.2965.

[14] S. Lin, R. Z. LeGeros, and J. P. LeGeros, J. Biomed. Mater. Res. A Vol. 66 (2003), p.819.

[15] S. -H. Wang, W. -J. Shih, W. -L. Li, M. -H. Hon, and M. -C. Wang, J. Eur. Ceram. Soc. Vol. 25(2005), p.3287.

[16] F. BarrEre, P. Layrolle, C. A. van Blitterswijk, and K. de Groot, Bone 25, 2, Supplement Vol. 1 (1999), p. 107S.

[17] J. -H. Park, D. -Y. Lee, K. -T. Oh, Y. -K. Lee, K. -M. Kim, and K. -N. Kim, Mater. Lett. In Press. 0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 0 . 0 0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 C a /T i ra tio C a /P ra tio Ratio T im e (m in u te s ).