Calcium Phosphate Coatings on Titanium Alloy via an Electrodeposition Method

Abstract:

Article Preview

Calcium phosphates coatings were deposited onto titanium discs via en electrodeposition method. Discs were blasted with calcium phosphate particles and etched in a mixture of sulfuric and fluoric acids. Temperatures from 25 to 80°C and current densities from 8 to 120 mA/ cm2 were used. Deposition times tested were between 10 and 120 min. The electrolyte consisted of a super saturated solution stirred at 250 rpm. The amount of magnesium (Mg2+) and carbonate (HCO3-) ions was varied from 0 to 1 mM. Coatings increased in thickness by increasing deposition time. The different amounts of Mg2+ and HCO3- affected the homogeneity and morphology of the coatings. Main factors affecting the deposition were temperature of electrolyte and current density.

Info:

Periodical:

Key Engineering Materials (Volumes 330-332)

Main Theme:

Edited by:

Xingdong Zhang, Xudong Li, Hongsong Fan, Xuanyong Liu

Pages:

549-552

Citation:

M. A. Lopez-Heredia et al., "Calcium Phosphate Coatings on Titanium Alloy via an Electrodeposition Method", Key Engineering Materials, Vols. 330-332, pp. 549-552, 2007

Online since:

February 2007

Export:

Price:

$38.00

[1] J. B. Park and R. S. Lakes, Biomaterials: an introduction. 1992, New York: Plenum Press.

[2] J. Lausmaa, J. Electron Spectrosc. Vol. 8 (1996), p.343.

[3] U. Rolander, L. Mattsson, J. Lausmaa, and B. Kasemo, Ultramicroscopy Vol. 19(1986), p.407.

DOI: https://doi.org/10.1016/0304-3991(86)90146-4

[4] H. Kienapfel, C. Sprey, A. Wilke, and P. Griss, J. Arthroplasty Vol. 14 (1999), p.355.

[5] Y. Fu, A. W. Batchelor, Y. Wang, and K. A. Khor, Wear Vol. 217 (1998), p.132.

[6] Y. Fu, A. W. Batchelor, and K. A. Khor, Wear Vol. 230 (1999), p.98.

[7] H. C. Gledhill, I. G. Turner, and C. Doyle, Biomaterials Vol. 22 (2001), p.1233.

[8] M. Svehla, P. Morberg, W. Bruce, B. Zicat, and W. R. Walsh, J. Arthroplasty Vol. 17 (2002), p.304.

[9] J. Lawrence, L. Hao, and H. R. Chew, Surf. Coat. Tech. Vol. 200 (2006), p.5581.

[10] S. Ban and S. Maruno, Biomaterials Vol. 16 (1995), p.977.

[11] S. Ban and S. Maruno, Biomaterials Vol. 19 (1998), p.1245.

[12] S. Rossler, A. Sewing, M. Stolzel, R. Born, D. Scharnweber, M. Dard, and H. Worch, J. Biomed. Mater. Res. A Vol. 64 (2003), p.655.

[13] S. Ban and J. Hasegawa, Biomaterials Vol. 23 (2002), p.2965.

[14] S. Lin, R. Z. LeGeros, and J. P. LeGeros, J. Biomed. Mater. Res. A Vol. 66 (2003), p.819.

[15] S. -H. Wang, W. -J. Shih, W. -L. Li, M. -H. Hon, and M. -C. Wang, J. Eur. Ceram. Soc. Vol. 25(2005), p.3287.

[16] F. BarrEre, P. Layrolle, C. A. van Blitterswijk, and K. de Groot, Bone 25, 2, Supplement Vol. 1 (1999), p. 107S.

[17] J. -H. Park, D. -Y. Lee, K. -T. Oh, Y. -K. Lee, K. -M. Kim, and K. -N. Kim, Mater. Lett. In Press. 0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 0 . 0 0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 C a /T i ra tio C a /P ra tio Ratio T im e (m in u te s ).

Fetching data from Crossref.
This may take some time to load.