Development of Failure Tolerant Multi-Layer Silicon Nitride Ceramics: Review from Macro to Micro Layered Structures

Abstract:

Article Preview

Recent developments have shown that producing multi-layer ceramic laminates with alternative layers under compressive and tensile stress can lead to significant improvements in toughness at a low cost. However, in many cases the improvements in fracture toughness is associated with the presence of surface “edge cracks” in the compressive layers or the use of porous interfaces between the layers. At the same time such effects can limit the performance of ceramics when used in harsh environments. This review covers the development of silicon nitride based laminate structures and characterisation of these multi-layer structures. The work presents the results of macro-layered laminates with layers greater than 150 μm thickness. The apparent fracture toughness of different designs is measured and the conditions for failure tolerant effects, including crack deflection, bifurcation and edge cracking, are shown and discussed. The structural and processing limitations of the macro-layered laminates are also presented. The development of a weight function analysis as an effective design tool for developing micro-layered laminates with layers of approximately 50 μm thickness is discussed along with the apparent fracture toughness results from these micro-laminates. The failure tolerant behaviour as well as the ease of producing micro-layered laminates with a toughness of 2-3 times higher than that of silicon nitride is shown.

Info:

Periodical:

Edited by:

Marc Anglada et al.

Pages:

117-126

DOI:

10.4028/www.scientific.net/KEM.333.117

Citation:

J. Kübler et al., "Development of Failure Tolerant Multi-Layer Silicon Nitride Ceramics: Review from Macro to Micro Layered Structures", Key Engineering Materials, Vol. 333, pp. 117-126, 2007

Online since:

March 2007

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.