Water Based Colloidal Processing of Ceramic Laminates


Article Preview

Multilayered materials and coating are complex structures proposed among others to face the structural requirements of ceramics. The development of reinforcement mechanism by laminated structures can be due to deflection criteria or to the presence of residual stresses and requires of tailored laminates. These designs are characterized by the phases, thickness and distribution of the layers as well as the joining strength between them. In this sense water based colloidal processing techniques are used to fabricate layered structures by consolidating the layers from fluid dispersions of the powders in water. In these processing methods the phases presented in the final laminate are mainly given by the composition of the starting slurries while the changes in thickness and sharpness of the layers are controlled by acting on the processing parameters. The achievement of stable slurries is a shared step for all the colloidal processing techniques. In the water based slurries the stability will be dominated by the polar media, the surface behavior of the particles and the presence of dispersant additives to increase the repulsion between particles. The stable slurry ensures an effective milling and dispersion of the phases as well as high solid loadings, if required. Further processes associated to shaping and consolidation of the layers requires the incorporation of additives and-or water removal. The shaping methods based on aqueous slurries can be classified taking into account the process of solid-water separation. For each of those shaping methods, the nature and amount of the additives is different in order to get the optimum rheological behavior and green strength after drying. Depending on the thickness of layers and coatings as well as the shape and dimensions of the samples, the shaping method can be selected alone and combined with others.



Edited by:

Marc Anglada et al.




A. J. Sanchez-Herencia, "Water Based Colloidal Processing of Ceramic Laminates", Key Engineering Materials, Vol. 333, pp. 39-48, 2007

Online since:

March 2007




[1] H. M. Chan: Annu Rev Mater Sci 27 (1997), 249.

[2] M. Y. He and J. W. Hutchinson: Int J Solids Struct 25 (1989), 1053.

[3] A. J. Phillipps, W. J. Clegg, and T. W. Clyne: Acta Metall Mater 41 (1993), 805.

[4] D. H. Kuo and W. M. Kriven: Mat Sci Eng a-Struct 241 (1998), 241.

[5] D. B. Marshall, J. J. Ratto, and F. F. Lange: J Am Ceram Soc 74 (1991), 2979.

[6] J. B. Davis, A. Kristoffersson, E. Carlstrom, and W. J. Clegg: J Am Ceram Soc 83 (2000), 2369.

[7] W. J. Clegg, K. Kendall, N. M. Alford, T. W. Button, and J. D. Birchall: Nature 347 (1990), 455.

[8] A. V. Virkar, J. L. Huang, and R. A. Cutler: J Am Ceram Soc 70 (1987), 164.

[9] D. J. Green, R. Tandon, and V. M. Sglavo: Science 283 (1999), 1295.

[10] C. Hillman, Z. G. Suo, and F. F. Lange: J Am Ceram Soc 79 (1996), 2127.

[11] A. J. Sanchez-Herencia, C. Pascual, J. He, and F. F. Lange: J Am Ceram Soc 82 (1999), 1512.

[12] M. P. Rao, A. J. Sanchez-Herencia, G. E. Beltz, R. M. McMeeking, and F. F. Lange: Science 286 (1999), 102.

[13] M. Oechsner, C. Hillman, and F. F. Lange: J Am Ceram Soc 79 (1996), 1834.

[14] J. S. Moya, J. A. SanchezHerencia, J. F. Bartolome, and T. Tanimoto: Scripta Mater 37 (1997), 1095.

[15] N. Claussen and J. Steeb: J Am Ceram Soc 59 (1976), 457.

[16] R. A. Cutler, J. D. Bright, A. V. Virkar, and D. K. Shetty: J. Am. Ceram. Soc. 70 (1987), 714.

[17] R. Tandon and D. J. Green: J Am Ceram Soc 74 (1991), (1981).

[18] S. Ho and Z. Suo: J Appl Mech-T Asme 60 (1993), 890.

[19] A. J. Sanchez-Herencia, L. James, and F. F. Lange: J Eur Ceram Soc 20 (2000), 1297.

[20] K. Ettre and G. R. Castles: Am Ceram Soc Bull 51 (1972), 482.

[21] A. Tarlazzi, E. Roncari, P. Pinasco, S. Guicciardi, C. Melandri, and G. de Portu: Wear Wear 244 (2000), 29.

DOI: https://doi.org/10.1016/s0043-1648(00)00429-4

[22] E. Lucchini and O. Sbaizero: J Eur Ceram Soc 15 (1995), 975.

[23] L. Zhang and V. D. Krstic: Theor Appl Fract Mec 24 (1995), 13 50 µm50 µm Figure 8. Self supported multilayer ceramic fabricated by sequential EPD.

[24] R. Bermejo, Y. Torres, A. J. Sanchez-Herencia, C. Baudin, M. Anglada, and L. Llanes: Fatigue Fract. Eng. Mater. Struct. 29 (2006), 71.

[25] J. Requena, R. Moreno, and J. S. Moya: J Am Ceram Soc 72 (1989), 1511.

[26] P. S. Nicholson, P. Sarkar, and X. Huang: J Mater Sci 28 (1993), 6274.

[27] B. Ferrari, A. J. Sanchez-Herencia, and R. Moreno: Mater Res Bull 33 (1998), 487.

[28] C. E. P. Willoughby and J. R. G. Evans: J Mater Sci 31 (1996), 2333.

[29] I. M. Low, R. D. Skala, and D. S. Perera: J Mater Sci Lett 13 (1994), 1334.

[30] Y. H. Koh, H. W. Kim, and H. E. Kim: J Am Ceram Soc 85 (2002), 2840.

[31] R. Moreno: Am Ceram Soc Bull 71 (1992), 1521.

[32] C. A. Gutierrez and R. Moreno: Mater Res Bull 36 (2001), (2059).

[33] C. A. Gutierrez and R. Moreno: Br. Ceram. Trans. 102 (2003), 219.

[34] F. F. Lange: J. Am. Ceram. Soc. 72 (1989), 3.

[35] J. A. Lewis: J. Am. Ceram. Soc. 83 (2000), 2341.

[36] B. J. Briscoe, G. Lo Biundo, and N. Ozkan: Ceram. Int. 24 (1998), 347.

[37] R. E. Mistler: Am. Ceram. Soc. Bull. 77 (1998), 82.

[38] J. Kiennemann, T. Chartier, C. Pagnoux, J. F. Baumard, M. Huger, and J. M. Lamerant: J. Eur. Ceram. Soc. 25 (2005), 1551.

[39] R. Moreno and C. A. Gutierrez, in Proceedings of the 9th CIMTEC, edited by P. Vincencini (Techna, Florencia, 1999), p.611.

[40] A. Bleier and C. G. Westmoreland: J. Am. Ceram. Soc. 74 (1991), 3100.

[41] B. R. Marple and J. Boulanger: J. Am. Ceram. Soc. 77 (1994), 2747.

[42] A. J. Sanchez-Herencia, K. Morinaga, and J. S. Moya: J. European Ceram. Soc. 17 (1997), 1551.

[43] R. Moreno: Am. Ceram. Soc. Bull. 71 (1992), 1647.

[44] E. Carlstrom and A. Kristoffersson: Key Eng. Mat. 206-2 (2002), 205.

[45] I. Santacruz, C. A. Gutierrez, M. I. Nieto, and R. Moreno: Adv. Eng. Mater. 3 (2001), 906.

[46] J. H. Xiang, Y. Huang, and Z. P. Xie: Mat. Sci. Eng. A-Struct 323 (2002), 336.

[47] Q. Q. Tan, M. Gao, Z. T. Zhang, and Z. L. Tang: Mater. Sci. Eng. A-Struct. 382 (2004), 1.

[48] A. Kristoffersson and E. Carlstrom: J. Eur. Ceram. Soc. 17 (1997), 289.

[49] B. Bitterlich and J. G. Heinrich: J. Eur. Ceram. Soc. 22 (2002), 2427.

[50] J. Gurauskis, A. J. Sanchez-Herencia, and C. Baudin: J. Eur. Ceram. Soc. 25 (2005), 3403.

[51] L. J. Vandeperre, A. Kristofferson, E. Carlstrom, and W. J. Clegg: J. Am. Ceram. Soc. 84 (2001), 104.

[52] X. M. Cui, S. Ouyang, Z. Y. Yu, C. G. Wang, and Y. Huang: Mater. Lett. 57 (2003), 1300.

[53] J. Gurauskis, C. Baudin, and A. J. Sánchez-Herencia: Ceram. Int. In press (2006).

[54] A. J. Sanchez-Herencia, J. Gurauskis, and C. Baudin: Composites B Available online 4 April 2006 (2006).

[55] J. Gurauskis, A. J. Sanchez-Herencia, and C. Baudin: J Eur Ceram Soc 26 (2006), 1489.

[56] Z. Chen, T. Takeda, K. Kikuchi, S. -i. Kikuchi, and K. Ikeda: Journal of the American Ceramic Society 87 (2004), 983.

[57] A. Hirt: 81 (2004).

[58] L. D. Landau and B. G. Levich: Acta Physicochim. URS 17 (1942), 42.

[59] B. Ferrari, S. Gonzalez, R. Moreno, and C. Baudin: J. European Ceram. Soc. 26 (2006), 27.

[60] S. Gonzalez, B. Ferrari, R. Moreno, and C. Baudin: J. Am. Ceram. Soc. 88 (2005), 2645.

[61] B. Ferrari, A. J. Sanchez-Herencia, and R. Moreno: J. Eur. Ceram. Soc. 26 (2006), 2205.