Laminated and Functionally Graded Ceramics by Electrophoretic Deposition


Article Preview

Electrophoresis is the effect that when an electric field is applied to a suspension of a powder in a liquid, the powder particles move under influence of this field. Frequently the powder particles also deposit at one of the electrodes. The form of the electrode determines the form of the deposit, hence shaping is possible. The current insights into the science and technology of electrophoretic deposition (EPD) will be summarized. EPD is well suited for shaping layered microstructures (laminates), by simply changing repeatedly between two or more suspensions during deposition. Tubular laminates consisting of silicon carbide layers and crack deflecting graphite interlayers have been produced. These tubes demonstrate an enhanced fracture energy and a gradual mode of failure. Another area of advanced ceramics where the use of EPD makes sense are functionally graded materials (FGM) in which one tries to combine in one component high hardness and high toughness. EPD allows the formation of FGM by depositing from a powder suspension to which a second suspension is continuously added during the process. An example will be shown of a graded WC-Co hardmetal.



Edited by:

Marc Anglada et al.




O. Van der Biest et al., "Laminated and Functionally Graded Ceramics by Electrophoretic Deposition", Key Engineering Materials, Vol. 333, pp. 49-58, 2007

Online since:

March 2007




[1] M. P. Rao, A. J. Sánchez-Herencia, G. E. Beltz, R. M. McMeeking, F. F. Lange, Science. 286. nr 5437, pp.102-105, (1999).

[2] W.J. Clegg, K. Kendall, N. McN. Alford, T.W. Button and J.D. Birchal, Nature, 347, 455 (1990).

[3] T. Hirai. Functional Gradient Materials, in Processing of Ceramics, part 2; Ed. R.J. Brook, Materials Science and Technology: A Comprehensive Treatment, VCH Verlagsgesellschaft mbH, 17B, 293- 341, (1996).

[4] Y. Miamoto, W.A. Kaysser, B.H. Rabin, A. Kawasaki, R.G. Ford, Functionally Graded Materials : Design, Processing and Applications, Kluwer 1999, pp.296-311.

[5] G. Anné, S. Hecht-Mijic, H. Richter, O. Van der Biest and J. Vleugels, Scripta Materialia, 54.


[12] 2053-2056 ( 2006).

[6] S. Novak, M. Kalin, P. Lukas, G. Anne, J. Vleugels and O. Van Der Biest, J. of the European Ceramic Society, In Press, Available (2006).

[7] G. Anné, K. Vanmeensel, J. Vleugels, O. Van der Biest , Key Engineering Materials , 314, 213- 218 (2006).

[8] O. Van der Biest and L. Vandeperre , Annu. Rev. Mater. Sci (1999) vol. 29, 327-52.

[9] F. Bouyer and A. Foissy, J. Am. Ceram. Soc., 1999. 82(8): p.2001-(2010).

[10] R. Clasen and J. Tabellion, Cfi-Ceramic Forum International, 2003. 80(10): p. E40-E45.

[11] T. Uchikoshi, K. Ozawa, B. Hatton, Y. Sakka, J. of Mat. Res.,. 16(2) pp.321-324, (2001).

[12] F. Delannay, Characterization of heterogeneous catalysts. eds. Marcel Dekker, Inc. (New York and Basel), (1984).

[13] I. D Morrison., Colloids and Surfaces A-Physicochemical and Engineering Aspects, 71(1): pp.1-37, (1993).

[14] G. Anné, K. Vanmeensel, B. Neirinck, O. Van der Biest, J. Vleugels, J. Europ. Ceramic Soc. in press , available on line (2006).

[15] G. Anné, K. Vanmeensel, J. Vleugels, O. Van der Biest, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 245, Nr. 1-3, pp.35-39 (2004).


[16] G. Anné, B. Neirinck, K. Vanmeensel, O. Van der Biest, J. Vleugels, Key Engineering Materials Vol. 314 pp.13-18 (2006).


[17] G. Anné, B. Neirinck, K. Vanmeensel, O. Van der Biest, J. Vleugels, J. Am. Ceram. Soc, Volume 89, Issue 3, Page 823-828, (2006).

[18] P. Sarkar, X. Huang, P.S. Nicholson, J. Am. Ceram. Soc., 76, (4), 1055-56 (1993).

[19] P. Sarkar, S. Datta, P.S. Nicholson, Composites part B, 28B, 49- 56, (1997).

[20] L. Vandeperre, O. Van Der Biest, Silicon Carbide laminates with Carbon Interlayers by Electrophoretic Deposition, in Key Engineering Materials, Vols. 127-131, 567-574, (1997).


[21] S. Put, J. Vleugels, O. Van der Biest, Acta Materialia, 2003. 51(20): pp.6303-6317.