Composite Materials for Thermal Expansivity Matching and High Heat Flux Thermal Management


Article Preview

A description is given of a possible solution of an important practical problem in microelectronics, namely producing a material of thermal expansion coeffiecient to equal that of silicon.



Key Engineering Materials (Volumes 334-335)

Edited by:

J.K. Kim, D.Z. Wo, L.M. Zhou, H.T. Huang, K.T. Lau and M. Wang




A. Kelly "Composite Materials for Thermal Expansivity Matching and High Heat Flux Thermal Management", Key Engineering Materials, Vols. 334-335, pp. 1017-1020, 2007

Online since:

March 2007





[1] L.N. McCartney and A. Kelly, Thermal and Elastic properties of [+θ-θ]S laminates, Comp. Sci. Tech. (in press).

[2] B. Rosen and Z. Hashin, Effective thermal expansion coefficients and specific heats of composite materials, Int. J. Eng. Sci. 8 (1970), p.157.

[3] R.G.C. Arridge, The thermal expansion and bulk modulus of composites consisting of arrays of spherical particles in a matrix with body or face centred cubic symmetry, Proc. R. Soc. Lond. A, 438 (1992), p.291.


[4] J.A. Elliott, A. Kelly, and A.H. Windle, Recursive Packing of dense particle mixtures, J. Mater. Sci. Lett. 21 (2002), p.1249.

[5] L.N. McCartney, Physically based damage models for laminated composites, Pro. Inst. Mech. Engrs. 217 (2003), Part L: J. Mater.: Design and Applns.: 163-199.

[6] P.W. May, R. Portman, and K.N. Rosser, Thermal conductivity of CVD diamond fibres and diamond fibre-reinforced epoxy composites, Diamond and Related Materials 14 (2005), p.598.


[7] J.E. Field, The properties of natural and synthetic diamond, (Academic Press, London, 1992).

Fetching data from Crossref.
This may take some time to load.