Fe3O4/Polyaniline Nanoparticles with Core-Shell Structure and their Inductive Heating Property in AC Magnetic Field

Abstract:

Article Preview

The magnetite (Fe3O4) nanoparticles were prepared by coprecipitation of Fe3+ and Fe2+ with aqueous NaOH solution. The Fe3O4/polyaniline (PANI) magnetic composite nanoparticles with core-shell structure with diameter of 30-50 nm were prepared via an in-situ polymerization of aniline in aqueous solution containing Fe3O4 magnetic fluid. The inductive heat property of Fe3O4/polyaniline composite nanoparticles in an alternating current (AC) magnetic field was investigated. The potential of Fe3O4/polyaniline nanoparticles was evaluated for localized hyperthermia treatment of cancers. The saturation magnetization Ms and coercivity Hc of Fe3O4 nanoparticles are 50.05 emu/g and 137 Oe respectively, the Fe3O4/polyaniline composite nanoparticles, 26.34 emu/g and 0 Oe. Exposed in the alternating current (AC) magnetic field for 29 min, the temperatures of physiological saline suspension containing Fe3O4 nanoparticles or Fe3O4/polyaniline composite nanoparticles are 63.6 °C and 52.4 °C respectively. The Fe3O4/polyaniline composite nanoparticles would be useful as good thermoseeds for localized hyperthermia treatment of cancers.

Info:

Periodical:

Key Engineering Materials (Volumes 334-335)

Edited by:

J.K. Kim, D.Z. Wo, L.M. Zhou, H.T. Huang, K.T. Lau and M. Wang

Pages:

1189-1192

Citation:

D. L. Zhao et al., "Fe3O4/Polyaniline Nanoparticles with Core-Shell Structure and their Inductive Heating Property in AC Magnetic Field", Key Engineering Materials, Vols. 334-335, pp. 1189-1192, 2007

Online since:

March 2007

Export:

Price:

$38.00

[1] A. K. Gupta and M. Gupta: Biomaterials 26 (2005), p.3995.

[2] S. M. Moghimi, A. C. H. Hunter and J. C. Murray: Pharm. Rev. 53 (2001), p.283.

[3] A. S. G. Curtis and C. Wilkinson: Trends Biotech. 19 (2001), p.97.

[4] J. M. Wilkinson: Med. Device Technol. 14 (2003), p.29.

[5] J. Panyam and V. Labhasetwar: Adv. Drug Del. Rev. 55 (2003), p.329.

[6] G. H. Kwei, R. B. Dreele, and A. Williams: J. Molecul. Struct. 223 (1990), p.383.

[7] Y. X. Wang, S. M. Hussain and G. P. Krestin: S. Eur. Radiol. 11 (2001), p.2319.

[8] J. Van der Zee: Annu. Oncol. 13 (2002), p.1173.

[9] P. Moroz, S.K. Jones and B.N. Gray: Int. J. Hyperthermia 18 (2002), p.267.

[10] A. Jordan, P. Wust and H. Fahling: Int. J. Hyperthermia 9 (1993), p.51.

[11] T. Minamimura, H. Sato and S. Kasaoka: Int. J. Oncol. 16 (2000), p.1153.

[12] A. Jordan, R. Scholz and P. Wust: J. Magn. Magn. Mater. 201 (1999), p.413.

[13] R. Hergta, R. Hiergeista and M. Zeisberger: J. Magn. Magn. Mater. 280 (2004).