Electrical Properties of Hot Press Sintered NASICON Ceramics

Abstract:

Article Preview

Sodium superionic conductor, NASICON ceramic (Na1+xZr2SixP3-xO12, x=2), was hot-press sintered under different temperatures and the electrical properties of the obtained different samples were investigated. Results show that the relative density of the ceramics can be improved by hot-press process efficiently and the crystal size of the samples are closely related to sintering temperature. With the increase of sintering temperature, both the density and the crystal size of samples increase obviously, resulting in the increase of ionic conductivity of samples as the sintering temperature. When the sintering temperature reaches 1150oC, the ionic conductivity of sample is as high is 3.6×10-3S/cm, which is obviously higher than that of sample sintered at 1000oC (2.13×10-3S/cm). As the frequency increase, the real parts and the imaginary parts of complex dielectric constants for all the samples decrease in 8.2 GHz~12.4GHz frequency band. The ceramics obtained at the higher temperature possess the higher dielectric constant.

Info:

Periodical:

Key Engineering Materials (Volumes 334-335)

Edited by:

J.K. Kim, D.Z. Wo, L.M. Zhou, H.T. Huang, K.T. Lau and M. Wang

Pages:

149-152

Citation:

D. M. Zhu et al., "Electrical Properties of Hot Press Sintered NASICON Ceramics", Key Engineering Materials, Vols. 334-335, pp. 149-152, 2007

Online since:

March 2007

Export:

Price:

$38.00

[1] S. Yao, Y. Shimizu, N. Miura, N. Yamazoe: Chem. Lett. (1990), p. (2033).

[2] P. Fabry, J.P. Gros, J.F. Million-Brodaz, M. Kleitz: Sensors and Actuators. 15 (1988), p.33.

DOI: https://doi.org/10.1016/0250-6874(88)85016-9

[3] P. Fabry, Y.L. Huang, A. Caneiro, G. Patrat: Sensors and Actuators B. 6 (1992), p.299.

[4] A. Essoumhi, C. Favotto, M. Mansori, et al: Silicates Industriels . 70 (2005), pp.95-101.

[5] O. Schaf, A. Weibel , P.L. Llewellyn, P. Knauth , N. Kaabbuathong , M.L. Di Vona , S. Licoccia , E. Traversa : Journal of Electroceramics. 13 (2004), pp.817-823.

DOI: https://doi.org/10.1007/s10832-004-5198-4

[6] H. Kang and H. Cho: J. Mater. Sci. 34(1999), p.5005.

[7] Y. Shimizu and T. Ushijima: Solid State Ionics. 132(2000), p.143.

[8] O. Bohnke, S. Roncheti, D. Mazza: Solid State Ionics. 122(1997), pp.127-136.

[9] N. Gasmi, N. Gharbi, H. Zarrhouk, et al. J. Sol-Gel. Sci. Technol. 4(1995) pp.231-237.

[10] I.M. Hodge, M.D. Ingram, A.R. West, J. Electroanal. Chem. 74 (1976) p.125.

[11] C.R. Mariappan, G. Govindaraj: Materials Science and Engineering B-Solid State Materials For Advanced Technology. 94 (2002), pp.82-88.

[10] [1] [10] [2] [10] [3] [10] [4] [10] [5] [10] [6] [10] [7] [10] [8] [10] [1] [10] [2] [10] [3] [10] [4] [10] [5] [10] [6] ε'(ω) Frequency(Hz) d b a.

DOI: https://doi.org/10.3897/zookeys.675.12453.figure3

[10] [1] [10] [2] [10] [3] [10] [4] [10] [5] [10] [6] [10] [7] [10] [8] [10] [0] [10] [1] [10] [2] [10] [3] [10] [4] [10] [5] [10] [6] [10] [7] ε"(ω) Frequency(Hz) d b a c Real part ε'(ω) Imaginary part ε"(ω) Fig. 3 Plots of real part ε'(ω) and imaginary part ε"(ω) of complex dielectric constant vs frequency for the samples (a)1000 oC; (b) 1050o C; (c) 1100 oC (d) 1150oC C.

DOI: https://doi.org/10.1007/bf03292120

Fetching data from Crossref.
This may take some time to load.