Morphology of Chromium in Cu- 2.0%~4.2%Cr Alloys


Article Preview

The microstructures of Cu-Cr alloys with 2.0-4.2wt%Cr have been studied. Very little dendritic copper was found in supereutectic Cu-Cr alloy containing 2.4wt%Cr. When Cr content reached to 4.2wt%, square-like section Cr fibers other than round fibers were observed besides primary dendritic chromium in the Cu-Cr alloy. The fibrous Cr particles are eutectic chromium phase.



Key Engineering Materials (Volumes 334-335)

Edited by:

J.K. Kim, D.Z. Wo, L.M. Zhou, H.T. Huang, K.T. Lau and M. Wang




Z. K. Fan and P. Xiao, "Morphology of Chromium in Cu- 2.0%~4.2%Cr Alloys", Key Engineering Materials, Vols. 334-335, pp. 277-280, 2007

Online since:

March 2007




[1] D. Bozic, N. Ilic, M.T. Jovanovic. Aging of Cu-Cr powders produced by rotating electrode process. J Mater. Sci. Lett., 1998, 17: 587-589.

[2] Fan Zhi-kang, Liang Shu-hua, Yang Hong-wang. The effects of Cr on properties of Cu-Cr alloys and bond of W-Cu/CuCr interface[J]. Electric Engineering Alloy, 1999, 72(3): 22-23.

[3] Yang Hong-wang. Study on microstructures and properties of as-cast Cu-Cr alloys [D]. Xi'an: Xi'an University of Technology, 2000. 30-40.

[4] A. Bell, H.A. Davies. Solid solubility extension in Cu-V and Cu-Cr alloys produced by chill block melt-spinning. Mater. Sci. Eng., 1997, A226-228: 1039-1041.


[5] Li Zhi-min. Study on Cu-Cr alloy, Special Cast and Non-ferrous Metals [J]. 1990,3:18-25. (In Chinese).

[6] Fan Zhi-kang, Liang Shu-hua and Xue Xu. Bond strength of W-Cu/CrCu integrated material.

[7] N. Gao,T. Tiainen,Y. Ji, L. Laakso. Control of microstructures and properties of a phosphorus-containing Cu-0. 6wt%Cr alloy through precipitation treatment [J]. J Mater Eng Perfor, 2000, 9(6): 623-629.


[8] P. Liu, B.X. Kang, X.G. Cao. Aging precipitation and re-crystallization of rapidly solidified Cu-Cr-Zr-Mg alloy [J]. Mater Sci Eng, 1999, A265: 262-267.

[9] F. Lopez, J. Reyes, B. Campillo, G. Aguilar-Sahagun, Rapid solidification of copper alloys with high strength and high conductivity [J]. J Mater Eng Perfor, 1997, 6(5): 611-614.


[10] J Stobrawa, L Ciura, Z Rdzawski. Rapidly solidified strips of Cu-Cr alloys [J]. Scr Mater, 1996, 34(11): 1759-1763.


[11] Y. Jin, K. Adachi, T. Takeuchi, and H.G. Suzuki. Correlation between the cold-working and aging treatment in a Cu-15 Wt Pct Cr in Situ composite [J]. Metall Mater Trans A, 1998, 29A: 1998-2195.


[12] D.L. Zhang, K. Mihara, E. Takakura, H.G. Suzuki. Effect of the amount of cold working and aging on the ductility of a Cu-15%Cr-0. 2%Ti in situ composite [J]. Mater Sci Eng, 1999, A266: 99-108.


[13] Fan Zhi-kang, Liang Shu-hua, Yang Hong-wang and Xiao Peng. Effects of extrusion on chromium precipitation in Cu-Cr alloy [J]. Trans Nonferrous Met Soc China, 2003, 13(2): 267-270.

[14] K Mihara,T Takeuchi and H G Suzuki. Effect of Zr on aging characteristics and strength of Cu-Cr in situ composite [J]. J Japan Inst Metals, 1998,62(3):238-245.

[15] K Mihara,T Takeuchi and H G Suzuki. Effect of Ti on aging characteristics and strength of Cu-Cr in situ composite [J]. J Japan Inst Metals, 1998,62(7):599-604.

[16] Hu Yong. Study on Morphology of Chromium and Its Effects on the Properties of Cu-Cr alloy, MS Thesis, 2001, Xi'an University of Technology, Xi'an.