A Nonlinear Mechanical Model for Tension of Bundles of Single-Walled Carbon Nanotubes

Abstract:

Article Preview

Tensile strength distributions of multi-walled carbon nanotubes (MWNTs), single-walled carbon nanotube (SWNT) ropes and sub-bundles are studied by statistical approach based on the experimental data sets. It shows that the distributions can be adequately described by a two-parameter Weibull model. Considering further their nonlinear stress-strain behavior, the force-strain relation and tensile strength of SWNT bundles are studied. The Weibull modulus of the sub-bundles in a SWNT bundle can be estimated in terms of the maximum sustained force and the failure strain of the bundle. A SWNT bundle was subjected to tensile testing using a nano-mechanical testing device. The result suggests that the nonlinear behavior of SWNTs does affect the force-strain relation of SWNT bundles, mainly at large strain.

Info:

Periodical:

Key Engineering Materials (Volumes 334-335)

Edited by:

J.K. Kim, D.Z. Wo, L.M. Zhou, H.T. Huang, K.T. Lau and M. Wang

Pages:

793-796

DOI:

10.4028/www.scientific.net/KEM.334-335.793

Citation:

T. Xiao et al., "A Nonlinear Mechanical Model for Tension of Bundles of Single-Walled Carbon Nanotubes", Key Engineering Materials, Vols. 334-335, pp. 793-796, 2007

Online since:

March 2007

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.