Growth of Oxide Nanorod, Nanotube and Nanocable Arrays through Template-Based Sol Electrophoretic Deposition


Article Preview

This paper introduces a process for the growth of oxide nanorod, nanotube, and nanocable arrays that combines sol preparation and template-based electrophoretic deposition. Examples are shown that the sol electrophoretic deposition is an effective method for the formation of polycrystalline and single crystal oxide nanorod arrays, nanotube arrays and conformal coating of thin films of oxides on metal nanorods to produce metal-oxide core-shell nanocable arrays.



Key Engineering Materials (Volumes 336-338)

Edited by:

Wei Pan and Jianghong Gong




H.M. Shang et al., "Growth of Oxide Nanorod, Nanotube and Nanocable Arrays through Template-Based Sol Electrophoretic Deposition", Key Engineering Materials, Vols. 336-338, pp. 2122-2127, 2007

Online since:

April 2007




[1] G.Z. Cao: Nanostructures and Nanomaterials: Synthesis, Properties and Applications (Imperial College, London 2004).

[2] Z.L. Wang: Nanowires and Nanobelts: Materials, Properties and Devices, Nanowires and Nonobelts of Functional Materials, Vol. 2. (Kluwer Academic Publishers, Boston 2003).

[3] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers; B. Gates, Y. Yin, F. Kim, and H. Yan: Adv. Mater. Vol. 15 (2003), p.353.

[4] A. Huczko: Appl. Phys. A Vol. 70 (2000), p.365.

[5] C. Burda, X. Chen, R. Narayanan, and M.A. El-Sayed: Chem. Rev. In press (2005).

[6] I. Zhitomirsky: Adv. Colloid Interf. Sci. Vol. 97 (2002), p.279.

[7] O.O. Van der Biest and L.J. Vandeperre: Annu. Rev. Mater. Sci. Vol. 29 (1999), p.327.

[8] P. Sarkar and P.S. Nicholson: J. Am. Ceram. Soc. Vol. 79 (1996), pp. (1987).

[9] A.C. Pierre: Introduction to Sol-Gel Processing (Kluwer, Norwell 1998).

[10] R.J. Hunter: Zeta Potential in Colloid Science: Principles and Applications (Academic Press, London 1981).

[11] C.J. Brinker and G. W. Scherer: Sol-Gel Science: the Physics and Chemistry of Sol-Gel Processing (Academic Press, San Diego 1990).

[12] J.D. Wright and N.A.J.M. Sommerdijk: Sol-Gel Materials: Chemistry and Applications (Gordon and Breach, Amsterdam 2001).

[13] D. H. Everett: Basic Principles of Colloid Science (the Royal Society of Chemistry, London 1988).

[14] W. D. Callister: Materials Science and Engineering: An Introduction (John Wiley & Sons, New York 1997).

[15] S.J. Limmer, S. Seraji, M. J. Forbess, Y. Wu, T. P. Chou, C. Nguyen, and G.Z. Cao: Adv. Mater. Vol. 13 (2001), p.1269.


[16] S.J. Limmer, S. Seraji, M.J. Forbess, Y. Wu, T.P. Chou, C. Nguyen, and G.Z. Cao: Adv. Func. Mater. Vol. 12 (2002), p.59.

[17] S.J. Limmer and G.Z. Cao: Adv. Mater. Vol. 15 (2003), p.427.

[18] S.J. Limmer, T.P. Chou, and G.Z. Cao: J. Mater. Sci. Vol. 39 (2004), p.895.

[19] D. Pan, Z. Shuyuan, Y. Chen, and J. G. Hou: J. Mater. Res. Vol. 17 (2002), pp. (1981).

[20] V. Petkov, P. N. Trikalitis, E. S. Bozin, S. J. L. Billinge, T. Vogt, and M. G. Kanatzidis: J. Am. Chem. Soc. Vol. 124 (2002), p.10157.

[21] K. Takahashi, S.J. Limmer, Y. Wang, and G.Z. Cao: J. Phy. Chem. B Vol. 108 (2004), p.9795.

[22] G.Z. Cao: J. Phys. Chem. B Vol. 108 (2004), p.19921.

[23] R.L. Penn and J. F. Banfield: Geochim. Cosmochim. Acta Vol. 63(1999), p.1549.

[24] C. M. Chun, A. Navrotsky and I. A. Aksay: Proc. Microscopy and Microanalysis (1995), p.188.

[25] J. Livage: Coordination Chem. Rev. Vol. 178-180 (1998), p.999.

[26] K.V. Saban, J. Thomas, P.A. Varughese, and G. Varghese: Res. Technol. Vol. 37 (2002), p.1188.

[27] D. Grier, E. Ben-Jacob, R. Clarke, and L.M. Sander: Phys. Rev. Lett. Vol. 56 (1986), p.1264.

[28] K. Takahashi, Y. Wang and G.Z. Cao, J. Phys. Chem. B Vol. 109 (2005), p.48.