Anticorrosion Behaviours of the TiO2 / WO3 Composite Photoelectrodes for 304 Stainless Steel

Abstract:

Article Preview

TiO2 is one kind of semiconductor-based photocatalyst. TiO2 shows relatively high reactivity and chemical stability under ultraviolet (UV) light. However TiO2 is a poor absorber of photons in visible light. In order to improve the absorption efficiency, the coatings of TiO2/WO3, WO3 and TiO2 on ITO were prepared by liquid phase deposition (LPD) and dip coating method, their microstructure, surface properties, photoelectrochemical properties are investigated in this paper. XRD results showed that the phases on the composite coatings are mainly anatase, rutile and WO3 respectively, the SEM results showed that the coatings of TiO2 and TiO2/WO3 are distributed evenly on the materials surface. The electrochemical experiment results showed that open circuit potential of TiO2 and TiO2/WO3 with presence of the UV light illumination were about -343 mV and –650 mV respectively, comparatively the rest potential of 304 stainless steel is about 48 mV, which means that the TiO2 or TiO2/WO3 coatings can protect 304 stainless steel from corrosion, and TiO2/WO3 coatings retained for a while anticorrosion even absence of UV light.

Info:

Periodical:

Key Engineering Materials (Volumes 336-338)

Edited by:

Wei Pan and Jianghong Gong

Pages:

2203-2206

DOI:

10.4028/www.scientific.net/KEM.336-338.2203

Citation:

H. Y. Li et al., "Anticorrosion Behaviours of the TiO2 / WO3 Composite Photoelectrodes for 304 Stainless Steel", Key Engineering Materials, Vols. 336-338, pp. 2203-2206, 2007

Online since:

April 2007

Export:

Price:

$35.00

[1] Z. Zuo, J. Ye, K. Sayama and H. Arakawa: Nature Vol. 414 (2001), p.625.

[2] A. Hagfeldt and M. Grüatzel: Chem. Rev. Vol. 95 (1995), p.49.

[3] M.R. Hoffmann, S. t. Martin, W. Choi and D.W. Bahnemann: Chem. Rev. Vol. 95 (1995), p.69.

[4] R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi and T. Watanabe: Nature Vol. 388 (1997), p.431.

DOI: 10.1038/41233

[5] H. Park, K.Y. Kim and W. Choi: J. Phys. Chem. B Vol. 106 (2002), p.4775.

[6] T. Imokawa, R. Fujisawa, A. Suda and S. Tsujikawa: Zairyo-to-Kankyo Vol. 43 (1994), p.482.

[7] T. Konishi and S. Tsujikawa: Zairyo-to-Kankyo Vol. 46 (1997), p.709.

[8] J. Yuan and S. Tsujikawa: J. Electrochem. Soc. Vol. 142 (1995), p.3444.

[9] J. Yuan and S. Tsujikawa: Zairyo-to-Kankyo Vol. 44 (1995), p.534.

[10] J. Huang, T. Shinohara and S. Tsujikawa: Zairyo-to-Kankyo Vol. 46 (1997), p.651.

[11] Y. Ohko, S. Saitoh, T. Tatsuma and A. Fujishima: J. Electrochem. Soc. Vol. 148 (2001), pp. B24.

[12] T. Tatsuma, S. Saitoh, Y. Ohko and A. Fujishima: Chem. Mater. Vol. 13 (2001), p.2838.

In order to see related information, you need to Login.