Authors: A. Trinchi, W. Wlodarski, Sandro Santucci, D. Di Claudio, Maurizio Passacantando, C. Cantalini, B. Rout, S.J. Ippolito, K. Kalantar-Zadeh, G. Sberveglieri
Abstract: The microstructural characterization of r.f. magnetron sputtered ZnO thin films deposited on 6H-SiC is presented with a comprehensive investigation of their properties as a function of annealing temperature and film thickness. These structures, with some modifications, are utilised as Schottky diode hydrogen gas sensors and Surface Acoustic Wave (SAW) devices.
123
Authors: Ping Luan, Jian Sheng Xie, Jin Hua Li
Abstract: Using magnetron sputtering technology, the CuInSi thin films were prepared by multilayer synthesized method. The structure of CuInSi films were detected by X-ray diffraction(XRD), the main crystal phase peak is at 2θ=42.458°; The resistivity of films were measured by SDY-4 four-probe meter; The conductive type of the films were tested by DLY-2 conductivity type testing instrument. The results show that the annealing temperature and time effect on the crystal resistivity and crystal structure greatly.
822
Authors: Jian Sheng Xie, Ping Luan, Jin Hua Li
Abstract: Using magnetron sputtering technology, the CuInSi nanocomposite thin films were prepared by multilayer synthesized method. The structure of CuInSi nanocomposite films was detected by X-ray diffraction (XRD), the peak of main crystal phase is at 2θ=42.180°; the morphology of the film surface was studied by SEM. The SEM images show that the crystalline of the film prepared by multilayer synthesized method was granulated, differed from the needle shape which was the morphology of the CuInSi film prepared by magnetron co-sputtering.
2770
Authors: Jian Sheng Xie, Jin Hua Li, Ping Luan
Abstract: Thin CuInSi films have been prepared by magnetron co-sputtering, and followed by annealing in N2 atmosphere at different temperatures. The structures of CuInSi films were detected by X-ray diffraction(XRD); X-ray diffraction studies of the annealed films indicate the presence of CuInSi, In2O3 and other peaks. The morphology of the film surface was studied by SEM. The band gap has been estimated from the optical absorption studies and found to be about 1.40 eV, but changes with purity of CuInSi. CuInSi thin film is a potential absorber layer material applied in solar cells and photoelectric automatic control.
302
Authors: Xiao Hua Sun, Shuang Hou, Zhi Meng Luo, Cai Hua Huang, Zong Zhi Hu
Abstract: Bismuth zinc niobate titanium (Bi1.5Zn0.5 Nb0.5Ti1.5O7) (BZNT) thin films were deposited on PtTiSiO2Si substrates by radio frequency (rf) magnetron sputtering. The microstructure, surface morphology, stress, dielectric and tunable properties of thin films were investigated as a function of initial annealing temperature. It’s found that high initial annealing temperature increases the grain size, dielectric constant and tunability of BZNT films simultaneously and decreases the tensile stress in films. The BZNT thin film annealed from 500 °C to 700 °C shows the highest FOM value of 45.67 with the smallest dielectric loss and upper tunability.
211