Growth and Characterization of Zinc Oxide Films by Pulsed Laser Deposition for Ultraviolet Detection

Abstract:

Article Preview

ZnO thin films were grown on single-crystal Si(100) substrate by pulsed laser deposition (PLD) technique. The crystal structure and electrical properties were investigated as a function of oxygen partial pressure. Results indicate that highly c-axis oriented ZnO films can be obtained at all oxygen pressure range. With the increase of oxygen pressure, the crystallinity is further enhanced and the film presents smooth, uniform and dense packed columnar microstructure. Hall measurement indicates the resistivity of ZnO films increases with oxygen pressure. ZnO film grown at optimum conditions is employed to fabricate the MSM structured UV detectors with Ti/Pt/Au interdigital electrode configuration by standard photolithography and lift-off technique. The I-V characteristic and photo response measurement indicate a good ohmic contact between the ZnO film and electrode, and significant photoresponsivity under ultraviolet illumination.

Info:

Periodical:

Key Engineering Materials (Volumes 336-338)

Edited by:

Wei Pan and Jianghong Gong

Pages:

577-580

DOI:

10.4028/www.scientific.net/KEM.336-338.577

Citation:

X. M. Li et al., "Growth and Characterization of Zinc Oxide Films by Pulsed Laser Deposition for Ultraviolet Detection", Key Engineering Materials, Vols. 336-338, pp. 577-580, 2007

Online since:

April 2007

Export:

Price:

$35.00

[1] R. F. Service: Science Vol. 276 (1997), p.895.

[2] D. P. Norton, Y. W. Heo, M. P. Ivill, et al.: Materials Today Vol. 7 (2004), p.34.

[3] S. J. Pearton, D. P. Norton, K. Ip, et al.: Prog. Mater. Sci. Vol. 50 (2005), p.293.

[4] A. Tsukazaki, A. Ohtomo, T. Onuma, et al.: Nature Materials Vol. 4 (2005), p.42.

[5] C. H. Chia, T. Makino, K. Tamura, et al.: Appl. Phys. Lett. Vol. 82 (2003), p.1848.

[6] R. Ondo-Ndong, G. Ferblantier, M. Al Kalfioui, et al.: J. Crys. Grow. Vol. 255 (2003), p.130.

[7] B. S. Li, Y. C. Liu, Z. S. Chu, et al.: J. Appl. Phys. Vol. 91 (2002), p.501.

[8] Y. Ma, G. T. Du, S. R. Yang, et al.: J. Appl. Phys. Vol. 95 (2004), p.6268.

[9] G. K. Paul and S. K. Se: Materials Letters Vol. 57 (2002), p.742.

[10] J. M. Bian, X. M. Li, X. D. Gao, et al.: Appl. Phys. Lett. Vol. 84 (2004), p.541; J. M. Bian, X. M. Li, C. Y. Zhang, et al.: Appl. Phys. Lett. Vol. 85 (2004), p.4070.

[11] S. Choopun, R. D. Vispute, W. Noch, et al.: Appl. Phys. Lett. Vol. 75 (1999), p.3947.

[12] J. L. Zhao, X. M. Li, J. M. Bian, et al.: J. Crystal Growth Vol. 276 (2005), p.507.

[13] W. S. Hu, Z. G. Liu, J. Sun, et al.: J. Phys. Chem. Solids Vol. 58 (1997), p.853.

[14] G. Heiland, E. Mollwo and F. Stöckmann: in Solid State Physics, edited by F. Seitz and D. Turnbull (Academic, New York, 1959).

[15] D. C. Look, J. W. Hemsky and J. R. Sizelove: Phys. Rev. Lett. Vol. 82 (1999), p.2552.

[16] A. F. Kohan, G. Geder, D. Morgan and C. G. Van de Walle: Phys. Rev. B Vol. 61 (2000), p.15019.

[17] M. Liu and H. K. Kim: Appl. Phys. Lett. Vol. 84 (2004), p.174.

In order to see related information, you need to Login.