A Survey on Control of Parallel Manipulator


Article Preview

Based on extensive study on literatures of control of parallel manipulators and serial manipulators, control strategies such as computed torque control, PD+ control, PD with feedforward compensation, nonlinear adaptive control are classified into two categories: model-based control and performance-based control. Besides, as advanced control strategies, robust control and passivity-based control for the parallel manipulators are also introduced. Comparative study in view of computation burden and tracking performance are performed. It turned out that the physical structure properties of parallel manipulators’ dynamics are similar with that of serial ones, and this constitutes a common foundation for the two kinds of manipulators to develop together that control design of parallel manipulators can start with ever established control methods of serial manipulators.



Edited by:

Shen Dong and Yingxue Yao




J.F. He et al., "A Survey on Control of Parallel Manipulator", Key Engineering Materials, Vol. 339, pp. 307-313, 2007

Online since:

May 2007




[1] B. Dasgupta and T.S. Mruthyunjaya: Mech. Mach. Theory, Vol. 35 (2000), pp.15-40.

[2] J.R. Keith: Ph.D. Thesis, the Department of Mechanical Engineering of Stanford University (1996).

[3] F. Ghorbel, O. Chetelat and R. Longchamp: Proc. of the IFAC Symposium on Robot Control, (1994), Capri, Italy.

[4] F. Ghorbel: Proc. of 34th IEEE Conf. on Decision and Control, Dec (1995), pp.540-542.

[5] T.L. Shen: The Fundamental Principle of Robot Robust Control (Tsinghua University Press, Beijing, 2000).

[6] G.F. Liu, X.Z. Wu and Z.X. Li: Proc. IEEE Int. Conf on Robot. Automat., Washington, (2002), pp.835-840.

[7] H.S. Kim, Y.M. Cho and K.I. Lee: Proc. 41th Conf. on Decision and Control. Nevada, USA, (2002), p.2062-(2067).

[8] J.Y. Kang, D.H. Kim and K.I. Lee: J. Robotic Systems, Vol. 17 (2000), pp.527-547.

[9] R.P. Paul: Technical Report AIM-177, Stanford Artificial Intelligence Laboratory (1972).

[10] M.L. Husty: Mech. Mach. Theory, Vol. 31 (1996) No. 4, pp.365-380.

[11] K. Kreutz: IEEE Trans. Automat. Contr., Vol. 34 (1989) No. 7, pp.763-767.

[12] K. Sjirk: Model Based Control of a Flight Simulator Motion System (PhD thesis, Delft: Delft University of Technology 2001).

[13] F. Reyes and R. Kelly: Mechatronics, (2001), pp.267-282.

[14] D.E. Koditscheck: Proc. IEEE Conf. Decision Control, Las Vegas, Vol. 12 (1984), pp.733-738.

[15] L.L. Whitcomb: IEEE Trans. Robot. Automat. , Vol. 9 (1993) No. 1, pp.59-70.

[16] B. Paden, R. Panja: Int. J. of Contr. Vol. 7 (1988) No. 6, pp.1697-1712.

[17] R. Kelly, R. Salgado: IEEE Trans. Robot. Automat. , Vol. 10 (1994) No. 4, pp.566-571.

[18] H. Cheng: Dynamics and Control of Parallel Manipulators with Redundant Actuation (Ph.D. Dissertation, the Hong Kong University of Science and Technology 2001).

[19] S. Sastry, M. Bodson: Adaptive Control: Stability, Convergence, and Robustness (Prentice-Hall 1989).

[20] M. Honegger, A. Codourey and E. Burdet: IEEE Int. Conf. Robot. Automat, (1997), pp.543-548.

[21] J.J.E. Slotine and W. Li: Int. J. Robotics Research, Vol. 6 (1987), pp.49-59.

[22] S. Arimoto: Proc. of IEEE Conf. Robot. Automat, San Francisco. Vol. 4 (2000), pp.227-232.

[23] Masato Nakao: Proc. IEEE Int. conf. Robot. Automat. , Vol. 1 (1987), pp.326-331.

[24] L. Sciavicco: Proc. American Control Conf., Chicago, (1992), pp.1239-1240.

[25] H. Seraji: Proc. Int. Conf. IEEE. Robot. Automat, (1988), pp.854-861.

[26] P. Chiacchio and et. al: IEEE Trans. Ind. Electr., Vol. 40 (1993) No. 4, pp.393-403.

[27] S.H. Lee, J.B. Song, W.C. Choi and et al: Mechatronics, Vol. 13 (2003), pp.605-619.