Plasticity Characteristics of Beta Titanium Alloy Obtained Using Depth-Sensing Nano-Indentation Test

Abstract:

Article Preview

In this study, depth sensing nano-indentation test was carried out to investigate the plastic/viscoplastic behavior of beta titanium alloy. The indentation experiment results showed that both hardening and softening effect existed in indentation process and the residual penetration depth was deeper when the nominal indentation strain rate increased. That is opposite to the room temperature tension test results, which showed a strain rate hardening behavior. FEM simulation combined with viscoplastic model was carried out to simulate the indentation procedure. FEM results showed that the pile-up pattern changed with the consideration of the nominal indentation strain rate effect. Atom force microscope (AFM) observation gave a same result of pile-up patterns.

Info:

Periodical:

Key Engineering Materials (Volumes 340-341)

Edited by:

N. Ohno and T. Uehara

Pages:

571-576

Citation:

X. T. Wang et al., "Plasticity Characteristics of Beta Titanium Alloy Obtained Using Depth-Sensing Nano-Indentation Test", Key Engineering Materials, Vols. 340-341, pp. 571-576, 2007

Online since:

June 2007

Export:

Price:

$38.00

[1] M. Dao, N. Chollacoop, K.J. Van Vliet, T.A. Venkatesh, S. Suresh. Acta. Mater. Vol. 49 (2001), pp.3899-918.

[2] Y. Gu, T. Nakamura, L. Prchlik, S. Sampath, J. Wallace. Mat Sci Eng A. Vol. 345 (2003), pp.223-33.

[3] J.L. Bucaille, S. Stauss, E. Felder, J. Michler. Acta. Mater Vol. 51 (2003), p, 1663-78.

[4] J. Malzbender, G de With. J. Mater. Res Vol. 17 (2002), p, 502-11.

[5] P. Kaszynski, E Ghorbel, D Marquis. J. Eng. Mater. Tech. Trans. Asme Vol. 120 (1998), p, 218-23.

[6] W. C. Oliver, GM Pharr. J. Mater. Res Vol. 7 (1992), p, 1564-83.

[7] P. L. Larsson, AE Giannakopoulos, E Soderlund, DJ Rowcliffe, R Vestergaard. Int. J. Solids Struct Vol. 33 (1996), p, 221.

[8] A. E. Giannakopoulos, PL Larsson, R Vestergaard. Int. J. Solids. Struct Vol. 31 (1994), p, 2679-708.

[9] M. T. Attaf. Mater. Lett Vol. 58 (2004), p, 3374-74.

[10] P. M. Sargent, MF Ashby. Mater. Sci. Tech Vol. - 8 (1992), p, 594- 601.

[11] M. Fujiwara, M Otsuka. Mater. Sci. Eng. A Vol. 319 (2001), p, 929-33.

[12] X. Ma, F Yoshida, K Shinbata. Mater. Sci. Eng. A Vol. 344 (2003), p, 296-99.

[13] J. L. Bucaille, S Stauss, P Schwaller, J Michler. Thin. Solid. Films Vol. 447 (2004), p, 239-45.

DOI: https://doi.org/10.1016/s0040-6090(03)01100-3

[14] M. Hinz, A Kleiner, S Hild, O Marti, U Durig, B Gotsmann, U Drechsler, TR Albrecht, P Vettiger. Eur. Polym. J Vol. 40 (2004), p, 957.

DOI: https://doi.org/10.1016/j.eurpolymj.2004.01.027

[15] L. Chaboche. Int. J. Solids. Struct Vol. 34 (1997), p, 2239-54.

Fetching data from Crossref.
This may take some time to load.