Mechano-Active Cartilage Tissue Engineering: The Effect of Dynamic Compressive Stimulation


Article Preview

Mechano-active scaffolds were fabricated from very elastic poly(lactide-co-carprolactone) by a gel-pressing method. The scaffolds were seeded with bone marrow stromal cells and the continuous compressive deformation was applied to cell-polymer constructs in the chondrogenic media. Then, they were implanted in nude mice subcutaneously to evaluate for the effect of dynamic compression for regeneration of cartilage. From the biochemical analyses, chondrogenic differentiation was sustained and enhanced significantly and chondral extracellular matrix was increased through mechanical stimulation. Histological analyses showed that implants stimulated mechanically formed mature and well-developed cartilaginous tissue, as evidenced by bone marrow derived chondrocytes within lacunae. Consequently, the periodic application of dynamic compression can encourage bone marrow stromal cells to differentiation to chondrogenic lineage and to maintain their phenotypes.



Key Engineering Materials (Volumes 342-343)

Edited by:

Young-Ha Kim, Chong-Su Cho, Inn-Kyu Kang, Suk Young Kim and Oh Hyeong Kwon




Y. M. Jung et al., "Mechano-Active Cartilage Tissue Engineering: The Effect of Dynamic Compressive Stimulation", Key Engineering Materials, Vols. 342-343, pp. 409-412, 2007

Online since:

July 2007