Receptor-Mediated Gene Delivery Using Chitosan Derivatives In Vitro and In Vivo


Article Preview

The key strategy for the advancement of gene therapy is the development of an efficient targeted gene delivery system into cells. The targeted gene delivery system is especially important in non-viral gene transfer which shows the relatively low transfection efficiency. It also opens the possibility of selective delivery of therapeutic plasmids to specific tissues. Chitosan has been considered to be a good candidate for gene delivery system, since it is already known as a biocompatible, biodegradable, and low toxic material with high cationic potential. However, low specificity and low transfection efficiency of chitosan need to be overcome prior to clinical trial. In this study, we focused on the chemical modification of chitosan for enhancement of cell specificity and transfection efficiency. Also, the potential of clinical application was investigated.



Key Engineering Materials (Volumes 342-343)

Edited by:

Young-Ha Kim, Chong-Su Cho, Inn-Kyu Kang, Suk Young Kim and Oh Hyeong Kwon




T. H. Kim et al., "Receptor-Mediated Gene Delivery Using Chitosan Derivatives In Vitro and In Vivo", Key Engineering Materials, Vols. 342-343, pp. 449-452, 2007

Online since:

July 2007




[1] R. Christiano, Anticancer Res. Vol. 18 (1998), p.3241.

[2] K. W. Leong, H. -Q. Mao, V.L. Truong-Le, K. Roy, S.M. Walsh, and J. T. August, J. Control Rel. Vol. 51 (1998) p.183.

[3] K.Y. Lee, I.C. Kwon, Y.H. Kim, W.H. Jo, and S.Y. Jeong, J. Control Rel. Vol. 51 (1998), p.213.

[4] G. Y. Wu, and C. H. Wu. Adv Drug Deliv Rev. Vol. 29 (1998), p.243.

[5] G. Ashwell, and J. Harford. Ann Rev Biochem Vol. 51 (1982), p.531.

[6] T. H. Kim, I. K. Park, J.W. Nah, Y.J. Choi, and C.S. Cho, Biomaterials. Vol. 25 (2004), p.3783.

[7] T. H. Kim, S. I. Kim, T. Akaike, and C. S. Cho, J. Control Rel. Vol. 105 (2005), p.354.

[8] S. Raychaudhuri, and K. L. Rock, Nat. Biotechnol. Vol. 16 (1998) p.1025.

[9] C. Foged, A. Sundblad, and L. Hovgaard, Pharm. Res. Vol. (2002) p.19.

[10] J. Banchereau, and R. M. Steinman, Nature Vol. 392 (1998) p.245.

[11] R. M. Steinman, Pathol. Biol. Vol. 51 (2003) p.59.

[12] F. Liu, and L. Huang, J. Control Rel. Vol. 78 (2002) p.259.

[13] S. S. Diebold, M. Cotton, E. Wagner, and M. Zenke, Adv. Exp. Med. Biol. Vol. 451 (1998) p.449.

[14] W. Jiang, W. J. Swiggard, C. Heufler, M. Peng, A. Mirza, R. M. Steinman, and M. C. Nussenzweig, Nature Vol. 375 (1995) p.151.

[15] T. H. Kim, J. W. Nah, M. H. Cho, T. G. Park, and C. S. Cho, J. Nanosci. Nanotechnol. (2006) in press.

[16] T. H. Kim, H. Jin, H. W. Kim, M. H. Cho, and C. S. Cho, Mol. Cancer Ther. (2006) Vol. 5 p.1723.

[17] N. Haicheur, B. Escudier, T. Dorval, et al. Clin. Exp. Immunol. Vol. 119 (2000).

[16] Fig. 5. Western blot analysis of mIL-12 p.70 and mIFN-� in tumor tissues of BALB/c mice bearing CT-26 carcinoma cells treated with MC/pmIL-12. Source: From Ref.

[16] .