Glucosylated Polypropylenimine Dendrimer as a Novel Gene Carrier

Abstract:

Article Preview

Polypropylenimine (PPI) dendrimers have been used by many researchers as gene delivery carriers due to their high functionality. Glucose as a kind of carbohydrate is biocompatible and hydrophilic. In this study, we synthesized glucosylated PPI (G-PPI) dendrimers to reduce cytotoxicity. Glucose substitution of G-PPI dendrimers was determined by the sulfuric acid micromethod. The G-PPI dendrimer was complexed with plasmid DNA in various N/P ratios, and the complex was characterized. G-PPI dendrimers showed good DNA binding ability and high protection of DNA from nuclease attack. The G-PPI dendrimer had low cytotoxicity compared to PPI dendrimer by cytotoxicity assay. Also, transfection efficiency was influenced by glucosylation degree and the transfection efficiency for the G-PPI-5 was slightly higher than that of PPI dendrimer in HeLa cell line.

Info:

Periodical:

Key Engineering Materials (Volumes 342-343)

Edited by:

Young-Ha Kim, Chong-Su Cho, Inn-Kyu Kang, Suk Young Kim and Oh Hyeong Kwon

Pages:

457-460

DOI:

10.4028/www.scientific.net/KEM.342-343.457

Citation:

Y. K. Kim et al., "Glucosylated Polypropylenimine Dendrimer as a Novel Gene Carrier", Key Engineering Materials, Vols. 342-343, pp. 457-460, 2007

Online since:

July 2007

Export:

Price:

$38.00

[1] M. Thomas, A.M. Klibanov: Appl Microbiol Biotechnol Vol. 62 (2003), p.27.

[2] J.R. Liberman, S.C. Ghivizzani, C.H. Evans: Mol. Ther. Vol. 6 (2002), p.141.

[3] H. Yang, W.J. Kao: J. Bikomater. Sci. Polymer Edn. Vol. 17 (2006), p.3.

[4] C. Dufes, I.F. Uchegbu, A.G. Schatzlein: Adv Drug Deliv Rev. Vol. 57 (2005), p.2177.

[5] R. Duncan, L. Izzo: Adv Drug Deliv Rev. Vol. 57 (2005), p.2215.

[6] H.T. Chen, M.F. Neerman, A.R. Parrish, E.E. Simanek: J. Am. Chem. Soc. Vol. 126 (2004), p.10044.

[7] E.K. Woller, M.J. Cloninger: Biomacromolecules Vol. 2 (2001), p.1052.

[8] I. Vrasidas, N.J. De Mol, R.M.J. Liskamp, R.J. Pieters: Eur. J. Org. Chem. (2001), p.4685.

[9] T.M. Reineke, M.E. Davis: Bioconjug Chem. Vol. 14 (2003), p.247.

[10] I.K. Park, S.E. Cook, Y.K. Kim, H.W. Kim, M.H. Cho, H.J. Jeong, E.M. Kim, J.W. Nah, H.S. Bom, C.S. Cho: Arch Pharm Res Vol. 28 (2005), p.1302.

[11] M. Monsigny, C. Petit, A.C. Roche: Anal. Biochem. (1988), p.525.

[12] M.R. Park, K.O. Han, I.K. Han, M.H. Cho, J.W. Nah, Y.J. Choi, C.S. Cho: J. Control Release. Vol. 105 (2005), p.367.

[13] P.K. Smith, R.I. Krohn, G.T. Hermanson, A.K. Mallia, F.H. Gartner, M.D. Provenzano, E.K. Fukimoto, N.M. Geoke, B.J. Olson, D.C. Klenk: Anal. Biochem. Vol. 150 (1985), p.76.

DOI: 10.1016/0003-2697(85)90442-7

[14] C.H. Ahn, S.Y. Chae, Y.H. Bae, S.W. Kim: J. Control Release. Vol. 97 (2004), p.567.

[15] S.R. Popielarski, S. Mishra, M.E. Davis: Bioconjug Chem. Vol. 14 (2003), p.672.

[16] C.H. Wang, G.H. Hsiue: Bioconjug Chem. Vol. 16 (2005), p.391.

In order to see related information, you need to Login.