Fabrication of Bio-Composite Drug Delivery System Using Rapid Prototyping Technology

Abstract:

Article Preview

The rapid prototyping (RP) technology has advanced in various fields such as verification of design, and functional test. Recently, researchers have studied bio-materials to fabricate functional bio-RP parts. In this research, a nano composite deposition system (NCDS) was developed to fabricate three-dimensional functional parts for bio-applications. In the hybrid process, the material removal process by mechanical micro machining and/or the deposition process are combined. NCDS uses biocompatible or biodegradable polymer resin as matrix and various bioceramics to form bio-composite materials. To test drug release rate in vivo environment, two different types of drug delivery system (DDS) were fabricated using the bio-composite materials. 1) Container type DDS used poly(DL-lactide-co-glycolide acid)(50:50) and 5-fluorouracil as the drug composite while polycaprolactone(PCL) served as the container of the drug. 2) Scaffold type DDS formed porous microstructure with poly(DL-lactide-co-glycolide acid)(50:50) and 5-fluorouracil composite. The effect of geometry of the DDS on release rate of drug is under investigation.

Info:

Periodical:

Key Engineering Materials (Volumes 342-343)

Edited by:

Young-Ha Kim, Chong-Su Cho, Inn-Kyu Kang, Suk Young Kim and Oh Hyeong Kwon

Pages:

497-500

DOI:

10.4028/www.scientific.net/KEM.342-343.497

Citation:

W. S. Chu et al., "Fabrication of Bio-Composite Drug Delivery System Using Rapid Prototyping Technology", Key Engineering Materials, Vols. 342-343, pp. 497-500, 2007

Online since:

July 2007

Export:

Price:

$35.00

[1] B. S. Shin and D. Y. Yang: International Journal of Precision Engineering Manufacturing Vol. 7, No. 3 (2006), P. 47.

[2] B. S. Shin J. G. Kim, W. S. Chang and K. H. Whang: International Journal of Precision Engineering Manufacturing Vol. 7. No. 3 (2006), P. 56.

[3] J. M. Williams, A. Adewunmi, R. M. Schek, C. L. Flanagan, P. H. Krebsbach, S. E. Feinberg, S. J. Hollister and S. Das: Biomaterials Vol. 26 (2005), p.4817.

[4] X. Zhang, X. N. Jiang and C. Sun: Sensors and Actuators, A22 No. 2 (1999), p.149.

[5] Y. P. Kathuria: Proc. 7th Int. Symp. Micro Machine Hum. Sci. (1996), p.59.

[6] G. Vozzi, C. Flaim, A. Ahluwalia and S. Bhatia: Biomaterials Vol. 24, (2003), p.2533.

[7] T. H. Ang, F. S. A. Sultana, D. W. Hutmacher, Y. S. Wong, J. Y. H. Fuh, X. M. Mo, H. T. Loh, E. Burdet and S. H Teoh: Materials Science and Engineering C Vol. 20 (2002), p.35.

DOI: 10.1016/s0928-4931(02)00010-3

[8] C. X. F. Lam, X. M. Mo, S. H. Teoh and D. W. Hutmacher: Materials Science and Engineering C Vol. 20 (2002), p.49.

[9] J. T. Jr. Santini, R. Langer and M. J. Cima: 10th Int. Conf. on Solid-State Sensors and Actuators (Sendai, Japan) Tech. Digest (1999), p.746.

[10] K.E. Uhrich, S.M. Cannizzaro, R.S. Langer, K.M. Shakesheff: Chem. Rev. 99 (1999) P. 3181.

[11] V.R. Bapat, H.P. Bhagwatwar, Novel methods of drug delivery to solid tumors, in: N.K. Jain (Ed. ), Progress in controlled and novel drug delivery systems, CBS Publishers, New Delhi, (2004).

[12] R. Jain, N. H. Shah, A. W. Malick, C. T. Rhodes: different preparative approaches. Drug Dev. Ind. Pharm. Vol. 24 (1998), p.703.

[13] N. Kunou, Y. Ogura, T. Yasukawa, H. Kimura, H. Miyamoto, Y. Honda and Y. Ikada,: J. Control Rel. Vol. 68 (2000), p.263.

[14] D.K. Armani and C. Liu: J. Micromechanics Microengineering Vol. 10 (2000) p.80.

[15] R. P. Lanza, R. Langer and W. L. Chick: Principles of Tissue Engineering (New York: Academic) (1998).

In order to see related information, you need to Login.