FEM in Plate Bending

Abstract:

Article Preview

The paper is concerned with the numerical method of determination bending force and calibration force in plate bending. For numeric procedure the finite element method is used. Calibration force is determined when bending force and calibration coefficient are known. Significant factors for determination of bending force are: material of the circular plate, bending radius circular plate, diameter of the circular plate, thickness of the circular plate and method of loading of the circular plate. The calibration coefficient is determined by experiment. The analysis of bending plate is limited to the facts and figures used so far in the fabrication of spherical tanks, i.e. for deformations up to 1 %.

Info:

Periodical:

Main Theme:

Edited by:

F. Micari, M. Geiger, J. Duflou, B. Shirvani, R. Clarke, R. Di Lorenzo and L. Fratini

Pages:

269-276

Citation:

B. Grizelj et al., "FEM in Plate Bending", Key Engineering Materials, Vol. 344, pp. 269-276, 2007

Online since:

July 2007

Export:

Price:

$38.00

[1] Hill. R., New horizons in the mechanics of solids / J. Mech. Phys. Solids 5, 66, (1956).

[2] Yamada Y. and Takatsuka K., Finite element analysis of nonlinear problems / J. Jap. Soc. Tech. Plasticity, 14, 758, (1973).

[3] Larsen P. K., Large displacement analysis of shells of revolutions, including creep, plasticity and viscoplasticity / Ph. D. Thesis, University of California, Berkeley, (1971).

[4] Needleman, A., Void growth in an elastic-plastic medium, Ph. D. Thesis, Harvard University, (1970).

[5] McMeeking M. and Rice J. R., Finite element formulation for problems of large elasticplastic deformation / Int. J. Solids Struc. 11, 601, (1975).

[6] Hill. R., Some basic principles in the mechanics of solids without a natural time / J. Mech. Phys. Solids, 7, 209, (1959).

[7] Oldroyd J. G., On the formulation of rheological equations of state / Proc. Yory. Soc., A200, 523, (1950).

[8] Hill R., Bifurcation and uniqueness in nonlinear mechanics of continua, Problems in Continuum Mechanics / p.155. Society of Industrial and Applied Mathematics, Philadelphia, (1961).

[9] Oh S. I., Ductile fracture in metalworking processes / Ph. D. Thesis, University of California, Berkeley, (1976).

[10] Oh. S. I. i Kobayashi, Finite element analysis of brake bending / Final report to battele Columbus Laboratories, Contract No. P-5334, (1978).

[11] Grizelj, B.: Doprinos analizi aksijalno simetricnog savijanja lima. Diss., FSB, Zagreb (1994).

[12] Grizelj, B.: Prilog istrazivanju elasticnog vracanja celicnih dvostruko zakrivljenih ploca nakon izrade hladnom plasticnom deformacijom. Magistarski rad, FSB Zagreb, (1982).

[13] Grizelj,B.; Popovic, R., Development of metal forming in the future (keynote paper). International scientific conference on production engineering 28. 06. -01. 07. 2006 pp.13-51, Korcula.

[14] Grizelj, B.: Doprinos analizi aksijalno simetricnog savijanja lima. Diss., FSB, Zagreb (1994).

[15] Grizelj, B.: Prilog istrazivanju elasticnog vracanja celicnih dvostruko zakrivljenih ploca nakon izrade hladnom plasticnom deformacijom. Magistarski rad, FSB Zagreb, (1982).

[16] Grizelj, B.: Plate bending of Spherical tank. Proceedings of the 6 th International conference on Technology of Plasticity, Nurmberg 1999, pp.643-644.

[17] Grizelj, B ; M. Math; F. Matejicek, Application FEM for proces plate bending. She Met 2000, 17-19 April 2000, Birmingham. Pp. 519-528.

[18] Grizelj, B; Math, M., Popovic, R., Keran, Z., Skunca, M. FEM bending. RIM 2005, pp.173-176.

Fetching data from Crossref.
This may take some time to load.