Dimensional Deviation of Roll Formed Components Made of High Strength Steel


Article Preview

During the last half century roll forming has become a highly productive metal forming technology, well-established in the industry for the manufacturing of mass products. About 8 % of the annual world production of steel is processed by roll forming mills. Roll forming technology enables the manufacturing of profile-shaped products with an extremely wide spectrum of geometrical shapes. In lightweight construction, the utilization of roll-formed structures of high and ultra-high-strength steels has increased remarkably in the recent years. However, the application of those types of steel entails some disadvantages resulting in a decreasing forming capacity and enormous efforts to reach the required dimensional accuracy. Until a profile leaves the roll forming machine with the target quality, it is mostly necessary to align the forming rolls several times. Sometimes even design changes are required. This is the result of unreliable process planning. Furthermore, typical profile failures such as twist, flare and spring-back occur even stronger compared to mild steels. Nowadays, it is usual to control the dimensional accuracy of the profiles after the last forming stand. This kind of quality control has the following disadvantage: manufacturing errors are detected very late. Therefore, a continuous quality control process and an active manipulation during the forming process promise a large potential for an improvement of the dimensional accuracy and an increase of roll forming productivity.



Main Theme:

Edited by:

F. Micari, M. Geiger, J. Duflou, B. Shirvani, R. Clarke, R. Di Lorenzo and L. Fratini




P. Groche and M. Henkelmann, "Dimensional Deviation of Roll Formed Components Made of High Strength Steel", Key Engineering Materials, Vol. 344, pp. 285-292, 2007

Online since:

July 2007




[1] Scherble, H.: Lasergeschweißte Profilrohre und Verbundprofile, Tagungsband der 3. Fachtagung Walzprofilieren an der TU-Darmstadt, verwaltet vom PtU Darmstadt und der Studiengesellschaft Stahlanwendung, (2002).

[2] Lange, K.: Umformtechnik, Band 3: Blechbearbeitung 2, völlig neu bearbeitete und erweiterte Auflage, Springer-Verlag, Berlin Heidelberg New York, (1990).

[3] Groche, P., Schmoeckel, D.: Kundenspezifische Kaltprofile durch flexibles Walzprofilieren,. In: Reinhart, G.; Zäh, M.F.: Marktchance Individualisierung - Festschrift zum 60. Geburtstag von Prof. Milberg, Springer Verlag, Berlin, (2003).

DOI: https://doi.org/10.1007/978-3-642-55495-7_26

[4] Halmos, G. T.: Roll forming Handbook,. Delta Engineering, Inc. Toronto, Ontario, Canada, (2006).

[5] Papeleux, L., Ponthot, J.P.: Finite element simulation of spring-back in sheet metal forming, Journal of materials processing technology 125-126, S. 785-791, Elsevier, (2002).

DOI: https://doi.org/10.1016/s0924-0136(02)00393-x

[6] Sedlmaier, A.: Konstruktion und Auslegung von Rollensätzen mit geometriebasierten Methoden, VDI-Wissensforum, Darmstadt (2004).

[7] Doege, E., Zenner, H., Palkowski, H., Hatscher, A. Schmidt-Jürgensen, R., Kulp, S., Sunderkötter, C.: Influence of elastic material characteristics on the properties of forming parts, Materialwissenschaft und Werkstofftechnik, 33 Issue 11 , WILEY-VCH Verlag GmbH, (2002).

[8] Evertz, Th., Sonne, H. -M., Steinbeck, G., Engl, B.: Material properties by continuos elastic straining, Materialwissenschaft und Werkstofftechnik, 35 Issue 8, WILEY-VCH Verlag GmbH, (2004).

[9] Eichhorn, A.: Ein Beitrag zur Untersuchung technologisch bedingter Formabweichungen am Werkstück beim Profilieren von Metallbändern, Dissertation TH Magdeburg, (1974).

[10] Neubauer, A.: Erkenntnisse und Probleme beim Profilieren von Metallbändern, Dissertation TH Magdeburg, (1977).