Process Characterization of Sheet Metal Spinning by Means of Finite Elements


Article Preview

Sheet Metal Spinning is a flexible manufacturing process for axially-symmetric hollow components. While the process itself is already known for centuries, process planning is still based on undocumented expertise, thus requiring specialized craftsmen for new process layouts. Current process descriptions indicate a vast scope of different dynamic influences while the underlying mechanical model uses a simple static approach. Thus, a 3D Finite Element Model of the process has been set up at IUL in order to analyze the process in detail, providing online as well as cross sectional data of the specimen formed. Within the scope of this article, the results of the above mentioned Finite Element Analysis (FEA) are presented and discussed with respect to the qualitative stress distributions introduced in the existing theoretical models. Main emphasis of this paper is set on a discussion of the qualitative stress distribution, which is, to the current state, only known in theory.



Main Theme:

Edited by:

F. Micari, M. Geiger, J. Duflou, B. Shirvani, R. Clarke, R. Di Lorenzo and L. Fratini




G. Sebastiani et al., "Process Characterization of Sheet Metal Spinning by Means of Finite Elements", Key Engineering Materials, Vol. 344, pp. 637-644, 2007

Online since:

July 2007




[1] N.N.: DIN 8584-4 Fertigungsverfahren Zugdruckumformen, German Standard, Deutsches Institut für Normung e.V. (DIN), Beuth Verlag, Berlin, Germany, (2003).

[2] C.C. Wong, T.A. Dean, J. Lin: A review of spinning, shear forming and flow forming processes, Int. J. Mach. Tool. Manu., Volume 43, Issue 14, pp.1419-1435, Elsevier Science (2003).


[3] M. Runge: Spinning and Flow forming (in German), Verlag Moderne Industrie, Landsberg /Lech, 1993, ISBN 3-478-93086-3.

[4] V. Reitmann, H. Kantz: Plastic Wrinkling and Flutter in Sheet Metal Spinning. Proceedings of the EQUADIFF 10, 27. 08. -31. 08. 2001 Prague, Czech Republic.

[5] M. Kleiner, R. Göbel, C. Klimmek, B. Heller, V. Reitmann, H. Kantz: Wrinkling in Sheet Metal Spinning. In: G. Radons, R. Neugebauer: Nonlinear Dynamics of Production Systems. Pp. 287- 303, Wiley-VHC, Weinheim, Germany, 2003, ISBN 3527-40430-9.


[6] N. Alberti, L. Cannizzaro, E. Lo Valvo, F. Micari: Analysis of metal spinning processes by the Adina code, Comput. Struct. Vol. 32, pp.517-525, Elsevier Science (1989).


[7] N. Alberti, L. Fratini: Innovative sheet metal forming processes: numerical simulations and experimental tests, J. Mater. Process. Technol., Vol. 150, pp.2-9, Elsevier Science (2004).


[8] K. Dai, C. Gao, D.C. Kang, Z.R. Wang: Numerical Simulation of Sheet Spinning Process, Proceedings of the 6 th ICTP, 19. 09. -24. 09. 1999, Nuremberg, Germany.

[9] E. Quigley, J. Monaghan: The Finite Element of conventional spinning using multi-domain models, J. Mater. Process. Technol., Vol. 124, pp.360-365, Elsevier Science (2002).


[10] E. Quigley, J. Monaghan: Enhanced finite element models of metal spinning, J. Mater. Process. Technol., Vol. 121, pp.43-49, Elsevier Science (2002).

[11] C. Klimmek, R. Göbel, W. Homberg, V. Kantz, M. Kleiner: Finite element analysis of sheet metal forming by spinning, 7th ICTP, 27. 10. -01. 11. 2002, Yokohama, Japan.

[12] H. Razavi, F. R. Biglari, A. Torabkhani: Study of Strains Distribution in Spinning Process Using FE Simulation and Experimental Work, TICME2005, 12. 12. -15. 12. 2005, Teheran, Iran.

[13] G. Sebastiani, A. Brosius, R. Ewers, M. Kleiner and C. Klimmek: Numerical investigation on dynamic effects during sheet metal spinning by explicit finite-element-analysis, J. Mater. Process. Technol., Vol. 177, pp.401-403, Elsevier Science (2006).