Finite Element Analysis of Self-Pierce Riveted Joints


Article Preview

Self-pierce riveting (SPR) is a sheet material joining technique which is suitable for joining dissimilar materials, as well as coated and pre-painted materials. Published work relating to finite element analysis of SPR joints is reviewed in this paper, in terms of process, static strength, fatigue strength, vibration characteristics and assembly dimensional prediction of the SPR joints. A few important numerical issues are discussed, including material modelling, meshing procedure, failure criteria and friction between substrates and between rivet and substrate. It is concluded that the finite element analysis of SPR joints will help future applications of SPR by allowing system parameters to be selected to give as large a process window as possible for successful joint manufacture. This will allow many tests to be simulated that would currently take too long to perform or be prohibitively expensive in practice, such as modifications to rivet geometry, die geometry or material properties. The main goal of the paper is to review recent progress in finite element analysis of SPR joints and to provide a basis for further research.



Main Theme:

Edited by:

F. Micari, M. Geiger, J. Duflou, B. Shirvani, R. Clarke, R. Di Lorenzo and L. Fratini




X. C. He et al., "Finite Element Analysis of Self-Pierce Riveted Joints", Key Engineering Materials, Vol. 344, pp. 663-668, 2007

Online since:

July 2007




[1] Bollohoff Fastenings Ltd.: www. boellhoff. de.

[2] Henrob Group: www. henrob. co. uk.

[3] Emhart Teknologies: www. emhart. com.

[4] The Welding Institute TWI.: www. twi. co. uk.

[5] T.A. Barnes and I.R. Pashby: J Mater Process Technol Vol. 99 (2000), p.72.

[6] L. Budde, W. Lappe and F. Liebrecht: Bleche Rohre Profile, Vol. 39 (1992), p.310.

[7] S.P. Sunday: SAE Paper 830526, (1983).

[8] H. Hill: IBEC'94 Body Assembly and Manufacture, vol. 8, (1994).

[9] R. Doo: Automotive Manufacturing International, (1993).

[10] R.M. Howard and S.P. Sunday: SAE Paper 831816, (1983).

[11] A.R. Krause and R.A. Chernenkoff: SAE Paper 950710, (1995).

[12] S.T. Riches, S.A. Westgate, E.D. Nicholas and H.J. Powell: Proceedings of the Materials for Lean Weight Vehicles Conference, Institute of Materials, (1995), p.137.

[13] K. W. Miller, Y.J. Chao and P.C. Wang: ASM Proceedings of the International Conference: Trends in Welding Research, (1998), p.910.

[14] T. Stegemann, O. Hahn and A. Schulte: La Revue de Metallurgie-CIT, Janvier (1998), p.95.

[15] Z. Jin and P.K. Mallick: ASME IMECE 2002-MED-323368, (2002), p.417.

[16] O. Hahn, G. Meschut and A. Peetz: Welding & Cutting, Vol. 51, No. 7 (1999) p. E130.

[17] C.A. Olivier: TWI Report 88254. 01/99/1039. 1, (1999).

[18] C. Madasamy, O. Faruque, T. Tyan and R. Thomas: ASME, AMD, Vol. 250, Crashworthiness of Composites and Lightweight Structures, (2001), p.73.

[19] O. Hahn and T. Wibbeke: Welding and Cutting, Vol. 4, No. 4, (2005), p.208.

[20] P.R. King: PhD Dissertation, University of Hertfordshire, (1997).

[21] O. Hahn and N. Dölle: ISBN3-8265-9427-4, (2001).

[22] R. Cacko, P. Czyžewski and A. Kocañda: Steel Grips Vol. 2 (2004), p.307.

[23] E. Atzeni, R. Ippolito and L. Settineri: SME Technical Paper TP05PUB94 (2005).

[24] E. Atzeni, R. Ippolito and L. Settineri: Proc. of the 6th AITEM Conf. (2003), p.281.

[25] E. Atzeni. R. Ippolito and L. Settineri: Proc. of the 4th CIRP Int. Seminar on Intelligent Computation in Manufacturing Engineering, (2004), p.305.

[26] B. Sui; D. Du and B. Chang: ASME, DE, Vol. 117, Proc. of the ASME Design Engineering Division, (2004), p.149.

[27] R. Neugebauer, R. Mauermann and R. Grutzner: Steel Research International, Vol. 76, No. 12, (2005), p.939.

[28] R. Porcaro, A.G. Hanssen, M. Langseth and A. Aalberg: J Mater Process Technol, Vol. 171 (2006) p.10.

[29] Y. Abe, T. Kato and K. Mori: J Mater Process Technol, Vol. 177 (2006), p.417.

[30] H. Agrawal, W. Li, S. Bollimunta, K. Potty and A. Blows: SAE Paper 2003-01-914, (2003).

[31] K. Iyer, F.L. Brittman, S.J. Hu, P.C. Wang, D.B. Hayden and S.P. Marin: ASME IMECE 2002-MED-32336, (2002), p.401.

[32] K. Iyer, S.J. Hu, F.L. Brittman, P.C. Wang, D.B. Hayden and S.P. Marin: Fatigue and Fracture of Engineering Materials and Structures, Vol. 28, No. 11, (2005), p.997.

[33] R. Porcaro, A.G. Hanssen, A. Aalberg and M. Langseth: Int. J Crashworthiness Vol. 9 (2004) p.141.

[34] R. Porcaro, A.G. Hanssen, M. Langseth and A. Aalberg: Int. J Solids and Structures, Vol. 43 (2006) p.5110.

[35] D. Tang, B. Barthelemy and H. Yuan: Transportation: Making Tracks for Tomorrows Transportation, (2002), p.207.

[36] M.G. Kim, J.H. Kim, K.C. Lee and W. Yi: Key Eng. Mater. Vols. 297-300 (2005) p.2519.

[37] X. He, I. Pearson and K. Young: Proc. ESDA2006, (2006).

[38] X. He, I. Pearson and K. Young: Key Eng. Mater., accepted for publication.

[39] S.A. Westgate, R. Doo, F. Liebrecht, S. Braeunling, T. Mattsson and K-O. Strömberg: SAE Paper 2001-01-0979, (2001).


[40] W. Cai, P.C. Wang and W. Yang: Int. J Machine Tools and Manufacture, Vol. 45 (2005) p.695.

Fetching data from Crossref.
This may take some time to load.