Analysis of Size-Effects in the Miniaturized Deep Drawing Process


Article Preview

With the increasing trend towards miniaturization and the enhanced demand for small components, reliable processes for mass production are needed. Today the deep drawing process is already used to produce large numbers of small parts (diameter < 1 mm) at low costs per part. But a better understanding of the process in relation to miniaturization is required to improve process stability, because several aspects of the process change when scaled down. For example, product accuracy and process parameters can be influenced by changing the ratio of surface to volume or the ratio of grain size to foil thickness. For the analysis of these effects experiments with geometrically scaled deep drawing tool sets from 8 mm to 1 mm punch diameter have been carried out, using CuZn37 foils in different annealed conditions and a foil thickness ranging from 0.3 mm to 0.04 mm. Additionally, the deep drawing process is simulated via FE-methods to consider influences that cannot be measured using the available experimental setup, such as temperature conditions resulting from the heat generated due to plastic dissipation and friction.



Main Theme:

Edited by:

F. Micari, M. Geiger, J. Duflou, B. Shirvani, R. Clarke, R. Di Lorenzo and L. Fratini




H. Justinger and G. Hirt, "Analysis of Size-Effects in the Miniaturized Deep Drawing Process", Key Engineering Materials, Vol. 344, pp. 791-798, 2007

Online since:

July 2007




[1] F. Vollertsen, Z. Hu, H. Schulze Niehoff, C. Theiler: State of the art in micro and investigations into micro deep drawing, Journal of Materials Processing Technology 151, 2004, S. 70-79.


[2] Pawelski, O.: Ähnlichkeitstheorie in der Umformtechnik, Plastomechanik und Werkstoffkunde, Berlin, Springer, 1993, ISBN 3-50-56682-1, (1993).

[3] Geiger, M., Vollertsen, F., Kals, R.: Fundamentals on the Manufacturing of Sheet Metal Microparts, Annals of the CIRP, Vol. 45/1/1996, pp.277-282.


[4] Y. Saotome, K. Yasuda, H. Kaga: Microdeep drawability of very thin sheet steels, Journal of Materials Processing Technology, 113, 2001, 641-647.


[5] S. Miyazaki, K. Shibata, H. Fujita: Effect of Specimen Thickness on mechanical Properties of polycrystalline Aggregates with various Grain Sizes, Acta Metallurgica, Vol. 27, pp.855-862, (1978).


[6] S. Miyazaki, H. Fujita, H. Hiraoka: Effect of Specimen Size on the Flow Stress of Rod Specimens of polycrystalline Cu-Al Alloy, Scripta Metallurgica, Vol. 13, pp.447-449, (1979).


[7] S. Miyazaki, H. Fujita: Effects of Grain Size and Specimen Thickness on Mechanical Properties of Polycrystalline Copper and Copper-Aluminum Alloy, Trans. JIM, Vol. 19, (1978).


[8] T. Pell-Walpole: The Effekt of Grain-Size on the Tensile Strength of Tin and Tin Alloys, J. Inst. Metals, Vol. 69, 1943, pp.131-146.

[9] Justinger, H., Witulski, N., Hirt, G.: Experimental and Numerical Investigation of Miniaturisation in Deep Drawing, Proc. of the 10 th International Conference on Metal Forming, 2004, Grips media.

[10] E. Siebel: Der Niederhalterdruck beim Tiefziehen, Stahl und Eisen 74 (1954), Nr.: 3.

[11] W. Armstrong: On Size Effects in polycrystal Plasticity, J. Mech. Phys. Solids, Vol. 9, 1961, pp.196-199.

[12] M. Henning, H. Vehoff: Größeneffekte im Zugversuch aufgrund plastischer Anisotropie, Prozessskalierung, Strahltechnik Band 27, BIAS Verlag, 2005, ISBN: 3-933762-17-0, S. 137146.

[13] Kopp, R., Wiegels, H.: Einführung in die Umformtechnik, 2. korrigierte Auflage, Aachen, Verlag Mainz, 1999, ISBN 3-86073-821-5.

[14] Wieland-Werke AG: Wieland-Kupferwerkstoffe - Herstellung, Eigenschaften und Verarbeitung, 6. Auflage, Ulm, Süddeutsche Verlagsgesellschaft, (1999).

[15] Dies, K.: Kupfer und Kupferlegierungen in der Technik, Springer-Verlag, Berlin/ Heidelberg/ New York, (1967).

Fetching data from Crossref.
This may take some time to load.