The Main Effect of Design Variables for a Safety Valve on a Fracture Pressure

Abstract:

Article Preview

The safety valve has been designed to protect high pressure vessels. A fracture plate made of a circular thin plate is located within the safety valve. The circular thin plate has an outlet for fluid release and to help decrease the pressure. As such, fracture of the circular thin plate can occur at the appointed pressure. In this study, design variables of the safety valve were used to control fracture pressure so that it was easy to apply in the development of a new model of a safety valve. Design variables were fluid diameter of the safety valve, thickness of the fracture plate, filet radius of the clamping bolt, fracture pressure, and clamped torque of the clamping bolt. Design variables were selected, since the fracture experiment indicated that these variables might play a critical role in the fracture of the circular thin plate. Fracture pressure was calculated by the finite element analysis method and analyzed to affect the design variables on the fracture pressure. Using regression analysis, main design variables such as the fluid diameter, the thickness and the fillet were selected and the relationships of the variables were expressed by a regression equation. Furthermore, finite element analysis method and the regression equation were verified comparing with the experiment result.

Info:

Periodical:

Key Engineering Materials (Volumes 345-346)

Edited by:

S.W. Nam, Y.W. Chang, S.B. Lee and N.J. Kim

Pages:

1581-1584

DOI:

10.4028/www.scientific.net/KEM.345-346.1581

Citation:

S. W. Lee et al., "The Main Effect of Design Variables for a Safety Valve on a Fracture Pressure", Key Engineering Materials, Vols. 345-346, pp. 1581-1584, 2007

Online since:

August 2007

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.