Elevated-Temperature Creep-Fatigue Crack-Growth Behavior of HAYNES®188 Superalloy


Article Preview

The creep-fatigue crack-growth behavior of HAYNES® 188, a cobalt-based superalloy, was studied at the temperatures of 649, 816, and 927 oC under isothermal conditions. Various hold times at the maximum load were introduced to study the effects of hold time and temperature on the crack-growth behavior. The experiments were conducted under constant stress-intensity-factorrange control modes. Crack lengths were measured by a direct current potential method. The introduction of hold times led to an increase in the cyclic crack-growth rate. As the temperature increases, the time-dependent crack-growth behavior was dominant.



Key Engineering Materials (Volumes 345-346)

Edited by:

S.W. Nam, Y.W. Chang, S.B. Lee and N.J. Kim




S.Y. Lee et al., "Elevated-Temperature Creep-Fatigue Crack-Growth Behavior of HAYNES®188 Superalloy", Key Engineering Materials, Vols. 345-346, pp. 287-290, 2007

Online since:

August 2007




[1] Haynes online literature, No. H-3001, Information on http: /www. haynesintl. com.

[2] P. Rodriguez and K. Bhanu Sankara Rao: Progess in Materials Science 37 (1993) 403-480.

[3] D. L. Klarstrom and G. Y. Lai: Superalloys (1988) 585.

[4] A. Mondel, K. H. Lang, D. Lohe, and E. Macherauch: Mater. Sci. Eng. 715A (1997) 234-236.

[5] K. B. S. Rao, M. G. Castelli, G. P. Allen, and J. R. Ellis: Metall. Mater. Trans. 28A (1997) 347-361.

[6] K. B. S. Rao, M. G. Castelli, and J. R. Ellis: Scripta Mater. 33 (1995) 1005-1012.

[7] L. J. Chen, P. K. Liaw, Y. H. He, M. L. Benson, J. W. Blust, P. F. Browning, R. R. Seeley, D. L. Klarstrom: Scripta Mater. 44 (2001) 859-865.

[8] G. R. Halford, J. F. Saltsman, and S. Kallury: in Proceedings of the Advanced Earth -to- Orbit Propulsion Technology Conference, MSFC, Huntsville, AL (1988) 497.

[9] ASTM Standard E 647-99: Standard Test Method for Measurement of Fatigue Crack Growth Rates, 2000 Annual Book of ASTM Standards, Vol. 03. 01, 591-630.

[10] H. H. Johnson: Materials Research and Standards, 5 (1965) 442-445.

[11] Y. L. Lu, L. J. Chen, P. K. Liaw, G. Y. Wang, R. L. McDaniels, S. A. Thompson, J. W. Blust, P. F. Browning, A. K. Bhattacharya, J. M. Aurrecoechea, and D. L. Klarstrom: Modeling the Performance of Engineering Structural Materials III, TMS Fall Meeting, Columbus, Ohio, Oct. 6-9 (2002).

[12] P. K. Liaw, T. R. Leax, T. R. Fabis and J. K. Donald: Eng. Fract. Mech. 26 (1987) 1-13.