Prevention of Dicing-Induced Damage in Semiconductor Wafers

Abstract:

Article Preview

Semiconductor devices are usually formed on a single silicon wafer during a batch processing method. Individual devices are separated from the wafer during the wafer sawing or dicing step. Subsequent packaging processes are then performed on the individual devices, whose edge portions are very susceptible to mechanical damage from the sawing process. Defects formed along device edges due to the dicing saw blade often provide potential sites for serious reliability problems. If the scribing area is reduced, the number of the separated devices from a single wafer increases, which results in productivity improvement. However, the closer the scribing position of the saw blade comes to the active device pattern, the greater possibility of sawing-induced damage to the active pattern is. Thus, this work shows methods to reduce the negative impact of the saw blade while maintaining close proximity of the scribe lines to the IC devices. In particular, this work suggests that a decrease in the size of the diamond particles embedded in the saw blade and in the rotation speed of the saw blade might contribute to the prevention of sawing-induced damage to device patterns.

Info:

Periodical:

Key Engineering Materials (Volumes 345-346)

Edited by:

S.W. Nam, Y.W. Chang, S.B. Lee and N.J. Kim

Pages:

485-488

DOI:

10.4028/www.scientific.net/KEM.345-346.485

Citation:

S. M. Lee "Prevention of Dicing-Induced Damage in Semiconductor Wafers", Key Engineering Materials, Vols. 345-346, pp. 485-488, 2007

Online since:

August 2007

Authors:

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.