Microstructure and Tensile Creep Behavior of Mg-Nd-RE-Ca Casting Alloys


Article Preview

Influences of Ca addition on microstructures and mechanical properties at room and elevated temperatures have been investigated for Mg-1.5%Nd-1.0%RE-0.5%Zn-(0~1.0)%Ca casting alloys, on basis of experimental results from X-ray diffractometry (XRD), scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS), tensile and creep tests. Microstructures of the alloys are characterized by dendritic α-(Mg) grains surrounded by Mg12Nd-Zn-(Ca) eutectic network phase. The average size of α grains decreases gradually with an increase in Ca content. At room temperature, yield strength (YS) is enhanced with increasing Ca content with a decrease in ultimate tensile strength (UTS) and elongation to fracture, whereas the Ca addition leads to greater YS and UTS at 175oC. The tensile creep strain and secondary creep rate, measured at 150 and 200oC under 100MPa for 100hrs, become lower with the increase in Ca content. The obtained tensile properties at elevated temperature demonstrate that the addition of Ca plays a role in improving high temperature mechanical properties including creep resistance for the Mg-Nd-RE-Zn-(Ca) alloys. In view of microstructural evolution, this would be attributed to the refined primary α grains and higher thermal stability of the Mg12Nd-Zn-Ca eutectic strengthening phase.



Key Engineering Materials (Volumes 345-346)

Edited by:

S.W. Nam, Y.W. Chang, S.B. Lee and N.J. Kim




J. H. Jun et al., "Microstructure and Tensile Creep Behavior of Mg-Nd-RE-Ca Casting Alloys", Key Engineering Materials, Vols. 345-346, pp. 557-560, 2007

Online since:

August 2007