Fracture Resistance in Multiphase Alloys

Abstract:

Article Preview

The fracture behavior of Nb-based in-situ composites is reviewed to elucidate the effects of alloy additions on the fracture process in multiphase alloys. The overview paper summarizes the current understanding of the processes by which alloying addition and microstructure alter the near-tip deformation and fracture mechanism, and presents a methodology for predicting the fracture toughness of the constituent phases and the composite. The alloying effects observed in Nb-based in-situ composites can be attributed to changes in dislocation mobility in the metallic solid solution matrix that provides ductile phase toughening in the composites. The size, volume fraction, and the continuity of the intermetallic phases dictate the fracture path and impact significantly the facture toughness of the in-situ composites.

Info:

Periodical:

Key Engineering Materials (Volumes 345-346)

Edited by:

S.W. Nam, Y.W. Chang, S.B. Lee and N.J. Kim

Pages:

611-618

DOI:

10.4028/www.scientific.net/KEM.345-346.611

Citation:

K. S. Chan "Fracture Resistance in Multiphase Alloys", Key Engineering Materials, Vols. 345-346, pp. 611-618, 2007

Online since:

August 2007

Authors:

Export:

Price:

$35.00

[1] B.P. Bewlay, M.R. Jackson, and H.A. Lipsitt: Metall. Mater. Trans. A Vol. 27A (1996).

[5] .

[2] K.S. Chan: Metall. Mater. Trans. A Vol. 27A, 1996, pp.2518-2531.

[3] D.L. Davidson, K.S. Chan, and D.L. Anton: Metall. Mater. Trans. A Vol. 27A (1996), pp.3007-3018.

[4] P.R. Subramanian, M.G. Mendiratta, D.M. Dimiduk, and M.A. Stucke: Mat. Sci. Eng. Vol. A240 (1997), pp.1-13.

[5] K.S. Chan and D.L. Davidson: Metall. Mater. Trans A Vol. 34A (2003), pp.1833-1849.

[6] K.S. Chan: Metall. Mater. Trans. A Vol. 32A (2001), pp.2475-2487.

[7] K.S. Chan, in: Mechanisms and Mechanics of Fracture, The John F. Knott Symposium, edited by W.O. Soboyejo, J.J. Lewandowski, and R.O. Ritchie TMS, Warrendale, PA, (2002) pp.143-148.

[8] K.S. Chan: Metall. Mat. Trans. A Vol. 34A (2003), pp.2315-2328.

[9] K.S. Chan and D.L. Davidson: Metall. Mat. Trans. A Vol. 32A, (2001), pp.2717-2727.

[10] K.S. Chan and D. L. Davidson: Metall. Mat. Trans. A Vol. 30A (1999), pp.925-939.

[11] K.S. Chan: Phil. Mag Vol. 85 (2-3) (2005), pp.239-259.

[12] K.S. Chan: Mat. Sci. and Eng. Vol. A409 (2005), pp.257-269.

[13] K.S. Chan: Mat. Sci. Eng. Vol. A329-331 (2002), pp.513-522.

[14] W-Y Kim, H. Tanaka, M-S. Kim, and S. Hanada: Mat. Sci. Eng. Vol. A346 (2003), pp.65-74.

[15] D.J. Thoma, K.A. Nibur, K.C. Chen, J.C. Cooley, L.B. Dauelsberg, W.L. Hults, and P.G. Kotula: Mat. Sci. Eng. Vol. A329-331 (2002), pp.408-415.

[16] R.M. Nekkanti, and D.M. Dimiduk: Mat. Res. Soc. Symp. Proceedings, Vol. 194, Pittsburgh, PA (1990), pp.175-182.

[17] K. Chang, R. Darolia, and H. Lipsitt: Acta Metall. Mater. Vol. 1 (1992), pp.2727-2737.

[18] K.S. Chan, J. Onstott, and K.S. Kumar, Metall. Mater. Trans. A Vol. 31A (2000), pp.71-80.

[19] J.D. Rigney and J.J. Lewandowski: Metall. Meter. Trans. A Vol. 27A (1996), pp.3292-3306.

[20] R.L. Fleischer and R.J. Zabala: Metall. Trans. A Vol. 21A (1990), pp.2149-2154.

In order to see related information, you need to Login.