First Principles Study on Ideal Strength of Cu Multi-Shell Nano-Wire

Abstract:

Article Preview

The ideal strength of a nano-component, which is the maximum stress of the structure, provides an insight into the mechanical behavior of minute material. We conducted tensile simulations for cylindrical-shaped Cu nano-wires composed of an atomic chain as a core wrapped around by shell(s) with the structure of (111) layers in an fcc crystal. The results are compared with Cu atomic chain and sheet which are components of the nanowire. Young’s moduli and the ideal strengths of the wires are less than a single atomic chain and a sheet. The mechanical strength of the wire is weakened by the following three factors: (A) Change in electron arrangement caused by combining core and shell; (B) Larger interatomic distance (inherent tensile strain) of the outer shell introduced by the mismatch of atomic layers due to the curvature difference; (C) Mismatch between shells due to curvature difference. Factor (A) reduces the bonding strength in the shell(s) that occupy a greater part of the wire. 5-1 wire, which consists of a core and a shell, is weaker than the single atomic chain and the single sheet due to (A) and (B). 10-5-1 wire, consisting of a core and two shells, has less strength than 5-1 wire due to (C) in addition to (A) and (B).

Info:

Periodical:

Key Engineering Materials (Volumes 345-346)

Edited by:

S.W. Nam, Y.W. Chang, S.B. Lee and N.J. Kim

Pages:

919-924

DOI:

10.4028/www.scientific.net/KEM.345-346.919

Citation:

T. Kitamura et al., "First Principles Study on Ideal Strength of Cu Multi-Shell Nano-Wire", Key Engineering Materials, Vols. 345-346, pp. 919-924, 2007

Online since:

August 2007

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.