Minimum Relative Entropy Criterion for Damage Detection and Location


Article Preview

Relative entropy has been employed, as an alternative to other regularization methods, in solving ill-conditioned linear inverse problems. Damage detection when treated as structural modification imparted by the damage leads to a linear inverse problem involving frequency response functions. This problem is amenable to ill-conditioning issues that could arise from the low frequency response values and noisy experiments. This article formulates and solves using the minimum relative entropy method the damage detection and localization problem on a simulated cantilever beam.



Edited by:

L. Garibaldi, C. Surace, K. Holford and W.M. Ostachowicz




A. Kyprianou et al., "Minimum Relative Entropy Criterion for Damage Detection and Location ", Key Engineering Materials, Vol. 347, pp. 421-426, 2007

Online since:

September 2007




[1] P. Attaerd: Thermodynamics and Statistical Mechanics, Equilibrium by Entropy Maximization, (Academic Press, Great Britain 2002).

[2] T. M. Cover and J. A. Thomas: Elements of Information Theory, (Wiley -Interscience, New York 1991).

[3] E. T. Jaynes: Phys. Rev. Vol. 106 (1957), p.620.

[4] E. T. Jaynes: Phys. Rev. Vol. 108 (1957), p.171.

[5] A. Dembo and O. Zeituni: Large Deviations Techniques and Applications (Springer, 1998).

[6] E. T. Jaynes: IEEE Proc. Vol. 70 (1982), p.939.

[7] A. D. Woodbury and T. J. Ulych: Water Resour. Res. Vol. 32. (1996). p.2671.

[8] R. M. Neupauer: A Comparison of Two Methods for Recovering the Release History of a Groundwater Contamination Source, (MSc Thesis, New Mexico of Mining and Technology, Socorro 1999).

[9] S. W. Doebling, C. R. Farrar, M. B. Prime and D. W. Shevits: LA-13070-MS(1996), Los Alamos National Laboratory, USA.

[10] S. W. Doebling, C. R. Farrar and M. B. Prime: Shock Vib. Dig. Vol. 30 (1998), p.91.

[11] D. Montalvão, N.M.M. Maia and A. M. R. Ribeiro: Shock Vib. Dig. Vol. 38 (2006), p.295.

[12] A. Kyprianou, J. E. Mottershead and H. Ouyang: MSSP Vol. 18 (2004), p.263.

[13] A. Furukawa and H. Otsuka: Coput. Aid. Civil & Infr. Eng. Vol. 21 (2006), p.292.

[14] C. D. Charalambous, A. Kyprianou and F. Rezaei in: Model Reduction and Coarse-Graining Approaches for Multiscale Phenomena, edited by A. N. Gorban, N. Kazantzis, Y. G. Kevekidis, H. C. Ottinger and C. Theodoropoulos (Springer, Berlin - Heidelberg -New Work 2006).


[15] G. Gounaris and A. Dimarogonas: Coput. Struct. Vol. 28 (1988), p.309.

[16] J. E. Mottershead, M. I. Friswell and C. Mares: Meccanica Vol. (1999), p.155.