Structural Analysis Methods for Structural Health Management of Future Aerospace Vehicles


Article Preview

Two finite-element-based, full-field computational methods and algorithms for use in Structural Health Management (SHM) systems are reviewed. Their versatility, robustness, and computational efficiency make them well suited for real-time, large-scale space vehicle, structures, and habitat applications. The methods may be effectively employed to enable real-time processing of sensing information, specifically for identifying three-dimensional deformed structural shapes as well as the internal loads. In addition, they may be used in conjunction with evolutionary algorithms to design optimally distributed sensors. These computational tools have demonstrated substantial promise for utilization in future SHM systems.



Edited by:

L. Garibaldi, C. Surace, K. Holford and W.M. Ostachowicz




A. Tessler "Structural Analysis Methods for Structural Health Management of Future Aerospace Vehicles", Key Engineering Materials, Vol. 347, pp. 57-66, 2007

Online since:

September 2007




[1] W. H. Prosser, S. G. Allison, S. E. Woodard, R. A. Wincheski, E. G. Cooper, D. C. Price, M. Hedley, M. Prokopenko, D. A. Scott, A. Tessler and J. L. Spangler: Proc. 2nd Australasian Workshop on Structural Health Monitoring, Melbourne, Australia, (2004).

[2] S. Shkarayev, A. Raman and A. Tessler: Proceedings of First European Workshop on Structural Health Monitoring, Cachan (Paris), France, 2002, p.1145, (2002).

[3] P. Bogert, E. Haugse, and R. Gehrki: 44 th AIAA/ASME/ASCE/AHS Structures, Structural Dynamics, and Materials Conference, Norfolk, VA, (2003).

DOI: 10.2514/6.2003-1626

[4] A. Tessler and J. Spangler: Proceedings of 2 nd European Workshop on Structural Health Monitoring, Munich, Germany, 2004, p.83.

[5] A. Tessler and J. Spangler: Computer Methods in Applied Mechanics and Engineering, Vol. 194 (2005), p.327.

[6] A. Parker, L. Richards, W. Ko, A. Piazza, V. Tran: (http: /hdl. handle. net/2060/20060024636, NASA Dryden Flight Center, 2006).

[7] W. K. Belvin: Space 2004 Conference and Exhibit, San Diego, California, AIAA 2004-5898, (2004).

[8] J. R. Blandino, R. G. Duncan, M. C. Nuckels, D. Cadogan: 46 th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference, Austin, Texas, AIAA 2005, p.1807.

DOI: 10.2514/6.2005-1807

[9] A. Tessler, H. R. Riggs, C. E. Freese, and G. M. Cook: Computer Methods in Applied Mech. Engrg., Vol. 155 (1998), p.15.

[10] A. Tessler, H. R. Riggs and M. Dambach: Int. J. Numerical Methods in Engineering, Vol. 44 (1999) p.1527.

[11] M. Froggatt and J. Moore: Applied Optics-OT Vol. 37 Issue 10 (1998), p.1741.

[12] C. Quach and S. Vazquez: NASA TM-2005-0213521, (2005).

[13] S. Vazquez, A. Tessler, C. Quach, E. Cooper, J. Parks, and J. Spangler: NASA/TM-2005213761, (2005).

[14] C. Quach, S. Vazquez, A. Tessler, J. Moore, E. Cooper and J. Spangler: IAA Paper 20056357; AIAA Guidance, Navigation, and Control Conference and Exhibit, San Francisco, CA (2005).

DOI: 10.2514/6.2005-6357

[15] M. Gherlone, M. Mattone, C. Surace, A. Tassotti, and A. Tessler: Proceedings of 6 th International Conference on Damage Assessment of Structures, Gdansk, Poland, (2005).

[16] R. Raniolo: Optimization of Strain Sensor Locations using Evolutionary Algorithms (M.S. Thesis, Politecnico di Torino, Italy, 2006).

Fetching data from Crossref.
This may take some time to load.