Dynamic Crack Analysis in Functionally Graded Piezoelectric Solids by Meshless Local Petrov-Galerkin Method


Article Preview

In the present paper, the meshless local Petrov-Galerkin (MLPG) method is extended to two-dimensional (2-D) continuously nonhomogeneous piezoelectric solids with cracks under dynamic loading conditions. To eliminate the time-dependence, the Laplace-transform technique is applied to the governing partial differential equations which are satisfied in the Laplace-transformed domain in a weak-form on small fictitious subdomains. A meshless approximation is used for spatial variations of the displacements and the electric potential.



Key Engineering Materials (Volumes 348-349)

Edited by:

J. Alfaiate, M.H. Aliabadi, M. Guagliano and L. Susmel




J. Sladek et al., "Dynamic Crack Analysis in Functionally Graded Piezoelectric Solids by Meshless Local Petrov-Galerkin Method", Key Engineering Materials, Vols. 348-349, pp. 149-152, 2007

Online since:

September 2007




[1] X. Zhu, Z. Wang and A. Meng: Journal of Material Science Letter Vol. 14 (1995), p.516.

[2] X. Zhu, J. Zhu, S. Zhou, Q. Li and Z. Liu: Sensors Actuators A Vol. 74 (1999), p.198.

[3] B.L. Wang: Mechanics Research Communications Vol. 30 (2003), p.151.

[4] C. Li and G.J. Weng: ASME Journal of Applied Mechanics Vol. 69 (2002), p.481.

[5] O. Gruebner, M. Kamlah and D. Munz:. Engineering Fracture Mechanics Vol. 70 (2003), p.1399.

[6] V. Govorukha and M. Kamlah: Archives Applied Mechanics Vol. 74 (2004), p.92.

[7] M. Kuna: Archives of Applied Mechanics Vol. 76 (2006), p.725.

[8] M. Enderlein, A. Ricoeur and M. Kuna: International Journal of Fracture Vol. 134 (2005), p.191.

[9] E. Pan: Engineering Analysis with Boundary Elements Vol. 23 (1999), p.67.

[10] F. Garcia-Sanchez, Ch. Zhang, J. Sladek and V. Sladek: Computational Materials Science Vol. 39 (2007), p.189.

[11] D. Gross, T. Rangelov and P. Dineva: SID: Structural Integrity & Durability Vol. 1 (2005), p.35.

[12] R.R. Ohs and N.R. Aluru: Computational Mechanics 27 (2001), p.23.

[13] G.R. Liu, K.Y. Dai, K.M. Lim and Y.T. Gu: Computational Mechanics Vol. 29 (2002), p.510.

[14] S.N. Atluri: The Meshless Method, (MLPG) For Domain & BIE Discretizations, (Tech Science Press 2004).

[15] V.Z. Parton and B.A. Kudryavtsev: Electromagnetoelasticity, Piezoelectrics and Electrically Conductive Solids (Gordon and Breach Science Publishers, New York 1988).

[16] J. Sladek, V. Sladek, Ch. Zhang, P. Solek and L. Starek: submitted to CMES: Computer Modeling in Engineering & Sciences (2007).