Microstructure Based Formability Characterization of Multi Phase Steels Using Damage Mechanics


Article Preview

Due to the coexistence of different micro structural components and their interactions, multiphase steels offer an excellent combination between high formability and strength. On the micro-scale, the fracture examination shows large influence of different phases and their distributions on the mechanical properties and failure mechanisms. Considering the influence of multiphase microstructure, an approach is presented using representative volume elements (RVE) in combination with continuum damage mechanics (CDM). Herein, the influence of the material properties of individual phases and the local states of stress on the material formability as well as the failure behavior can be examined. By means of the RVE-CDM approach, a precise criterion for the deformability characterization in sheet metal forming of multi phase steels is presented.



Key Engineering Materials (Volumes 348-349)

Edited by:

J. Alfaiate, M.H. Aliabadi, M. Guagliano and L. Susmel




V. Uthaisangsuk et al., "Microstructure Based Formability Characterization of Multi Phase Steels Using Damage Mechanics", Key Engineering Materials, Vols. 348-349, pp. 217-220, 2007

Online since:

September 2007




[1] W. Bleck, A. Frehn, S. Papaefthymiou: Steel Research International Vol. 75 (2004) 11, 705-712.

[2] UltraLight Steel Auto Body, ULSAB Final Report, American Iron and Steel Institute, Washington DC (1998).

[3] V.F. Zackay, E.R. Parker, D. Fahr, R. Bush: Transact. of the ASM 60 (1967), 252-259.

[4] G. Frommeyer and O. Graessel: Stahl und Eisen 122 (2002) 4, 65-69.

[5] S. Papaefthymiou, U. Prahl, W. Bleck, J. Sietsma, S. van der Zwaag: Int. J. Mat. Res. 12 (2006), 1723-1731.

[6] U. Prahl, V. Uthaisangsuk, S. Papaefthymiou, W. Bleck, J. Sietsma, S. van der Zwaag: Comp. Mat. Sci. 39 (2007) 1, 17-22.

DOI: https://doi.org/10.1016/j.commatsci.2006.01.023

[7] W.M. Kaluza, M. Lake, L. Pesek, W. Bleck: In Proc. of Materials Week 2000, International Congress on Advanced Materials, their Processes and Applications, Munich, 25. -28. 09. (2000).

[8] V. Tvergaard, A. Needleman: Acta metal. 32 (1984) 1, 157-169.

[9] A. Needleman, V. Tvergaard: J. Mech. Phys. Solids 35 (1987), 151-183.

[10] U. Mühlich, T. Siegmund, W. Brocks: A user material subroutine of the modified GursonTvergaard-Needleman model of porous metal plasticity for rate and temperature dependent hardening, Technical report WMG/98/1, GKSS (2000).

[11] C. Chu, A. Needleman: J. Eng. Mater. Tech. 102 (1980), 249.

[12] U. Prahl, W. Rehbach, C. Kuckertz, D. Weichert, W. Bleck: Key Eng. Mat. 251-252, (2003), 351-356.

DOI: https://doi.org/10.4028/www.scientific.net/kem.251-252.351