Determination of the Fatigue Behavior of Aluminide Coatings by Means of the Impact Testing Method


Article Preview

The impact testing is an efficient experimental method that enables the quantitative and qualitative determination of the fatigue resistance of mono- and multilayer coatings deposited on various substrates, which was not possible with the common testing methods previously available. In this paper the experimental assessment of the fatigue resistance of coatings working under cyclic loading conditions by means of the dynamic impact testing method is presented. The fatigue failure mode, such cohesive or adhesive, of the investigated coatings is determined using scanning electron and optical microscopy, as well as EDX analysis. Critical values of the stress components, responsible for distinctive fatigue failure modes of the coating substrate system are obtained and the fatigue limits of aluminide coatings are illustrated in simple diagrams containing the impact load versus the number of successive impacts that the examined aluminide-P91 system can withstand.



Key Engineering Materials (Volumes 348-349)

Edited by:

J. Alfaiate, M.H. Aliabadi, M. Guagliano and L. Susmel




K. David et al., "Determination of the Fatigue Behavior of Aluminide Coatings by Means of the Impact Testing Method ", Key Engineering Materials, Vols. 348-349, pp. 645-648, 2007

Online since:

September 2007




[1] N.S. Stoloff: Mater. Sci. Eng. A258 (1998), p.1.

[2] R.S. Sundar, R.G. Baligidad, Y.V.R.K. Prasad and D.H. Sastry: Mater. Sci. Eng. A258 (1998), p.219.

[3] G.W. Goward: Surf. Coat. Technol. Vol. 108-109 (1998), p.73.

[4] V. Paidar: Mater. Sci. Eng. A 234-236 (1997), p.15.

[5] M. Yamaguchi, H. Inui and K. Ito: Acta Mater. Vol. 48 (2000), p.307.

[6] K. Stein-Fechner, J. Konys and O. Wedemeyer: J. Nucl. Mater. Vol. 249 (1997), p.33.

[7] R. Mevrel and P. Pichoir: Mater. Sci. Eng. Vol. 88 (1987), p.1.

[8] R. Prescott and M.J. Graham: Oxid. Met. Vol. 38 (1992), p.73.

[9] M.A. Montealegre, J.L. Gonzàlez-Carrasco, M.A. Morris-Munoz, J. Chao and D.G. Morris: Intermetallics Vol. 8 (2000), p.439.

[10] C.D.N. Chan, C. Huvier and J.F. Dinhut: Intermetallics Vol. 9 (2001), p.817.

[11] C. -H. Xu, W. Gao and Y. -D. He: Scripta Mater. Vol. 41 (2000), p.975.

[12] D.B. Lee, G.Y. Kim and J.G. Kim: Mater. Sci. Eng. A339 (2003), p.109.

[13] I. Rommerskirchen, B. Eltester and H.J. Grabke: Mater. Corros. Vol. 47 (1996), p.646.

[14] D. Li, Y. Xu and D. Lin: J. Mater. Sci. Vol. 36 (2001), p.979.

[15] V.S. Rao and V.S. Raja: Intermetallics Vol. 11 (2003), p.119.

[16] F. Lang, Z. Yu, S. Gedevanishvili, S.C. Deevi and T. Narita: Intermetallics Vol. 11 (2003), p.697.

[17] F. Lang, Z. Yu, S. Gedevanishvili, S.C. Deevi, S. Hayashi and T. Narita: Intermetallics Vol. 11 (2003), p.135.

[18] A.A. Voevodin, R. Bantle, A. Matthews: Wear, Vol. 185 (1995), p.151.

[19] R. Bantle, A. Matthews: Surface and Coatings Technology, Vol. 74-75 (1995), p.857.

[20] W. Heinke, A. Leyland, A. Matthews, G. Berg, C. Friedrich, E. Broszeit: Thin Solid Films, Vol. 270 (1995), p.431.

[21] H. Ziegele, C. Rebholz, A.A. Voevodin, A. Leyland, S. L. Rohde, A. Matthews: Tribology International, Vol. 30, No. 12 (1997), p.845.

Fetching data from Crossref.
This may take some time to load.