Probabilistic Analysis of Three-Dimensional Beams with Uncertain Damage

Abstract:

Article Preview

This paper deals with a simple and reliable method for the probabilistic characterization of the linear elastic response of frame structures with edge cracks of uncertain depth and location in the three-dimensional setting. A numerical test evidences the performance of the approach.

Info:

Periodical:

Key Engineering Materials (Volumes 348-349)

Edited by:

J. Alfaiate, M.H. Aliabadi, M. Guagliano and L. Susmel

Pages:

97-100

Citation:

C. Gentilini and L. Nobile, "Probabilistic Analysis of Three-Dimensional Beams with Uncertain Damage", Key Engineering Materials, Vols. 348-349, pp. 97-100, 2007

Online since:

September 2007

Export:

Price:

$38.00

[1] M. Di Paola: Prob. Engng. Mech., Vol. 19 (2004), p.321.

[2] C. Gentilini, F. Ubertini and E. Viola: Prob. Engng. Mech., Vol. 20 (2005), p.307.

[3] W.H. Muller, G. Herrmann and H. Gao: Theor. Appl. Fract. Mech., Vol. 18 (1993), p.163.

[4] L. Nobile: Theor. Appl. Fract. Mech., Vol. 33 (2000), p.107.

[5] T.M. Tharp: Int. J. Numer. Meth. Engng., Vol. 24 (1987), p. (1941).

[6] N. Anifantis and A. Dimarogonas: Int. J. Solids Structures, Vol. 19 (1983), p.281. l l l y x Z cracked beam elements 1 f A 2 Monte Carlo sol. Present sol.