Liquid-Phase Synthesis of Carbon Nanotubes from Alcohols

Abstract:

Article Preview

Vertically aligned carbon nanotubes (CNTs) were grown on a stainless steel substrate (SUS304) by resistance-heating method in alcohols containing homogeneously dissolved cobaltocene Co(C5H5)2 as a catalyst source. Straight-chain primary alcohols, 1,2-ethanediol and cyclohexanol were used as carbon sources to examine the effects of the molecular structures on the morphology of the aligned CNTs. Methanol brought the best purity and alignment of CNTs of all the alcohols. The CNTs from 1,2-ethanediol was worse in the purity than those from ethanol with the same number of carbon atoms. The CNTs from cyclohexanol had a better purity than those from 1-hexanol. Distinctive features of this method are simple, low cost and a one-step process involving none of vacuum processes and catalyst preparation processes.

Info:

Periodical:

Edited by:

K. Katayama, K. Kato, T. Takenaka, M. Takata and K. Shinozaki

Pages:

19-22

DOI:

10.4028/www.scientific.net/KEM.350.19

Citation:

K. Yamagiwa et al., "Liquid-Phase Synthesis of Carbon Nanotubes from Alcohols", Key Engineering Materials, Vol. 350, pp. 19-22, 2007

Online since:

October 2007

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.